Download Free An Introduction To Electromagnetic Wave Propagation And Antennas Book in PDF and EPUB Free Download. You can read online An Introduction To Electromagnetic Wave Propagation And Antennas and write the review.

This text should serve as an introduction to the application of electromagnetics EM, following an initial course in basic EM theory. A particular feature of the book is that it examines time domain rather than frequency domain methods in depth.; This book is intended for advanced undergraduate and graduates in electrical and electronic engineering. Research and practitioners in electromagnetics in electrical and electronic engineering and physics.
This book constitutes the first single-volume, English-language treatise on electromagnetic wave propagation across the frequency spectrum.
Provides an introduction to the fundamental principles of antennas and wave propagation. Unlike other books available, there is more emphasis on mathematical explanation in addition to physical understanding. Physical principles are explained in detail with clear diagrams to support the theory.
This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.
This highly illustrated and accessible text will be an ideal introduction to the application of electromagnetics (EM) following an initial course in basic EM theory. The book covers the well established structure of elementary EM courses, beginning with Maxwell’s equations in integral form and developing the wave equation to show the essential properties of waves. In addition to providing a grounding in this traditional curriculum, the principal concern throughout is to make difficult concepts of electromagnetism more accessible. The adoption of time domain methods for this purpose is the book’s most important breakthrough, allowing the fundamentals of applied electromagnetics to be introduced with a clarity and simplicity not available through the conventional route. Another new aspect of this book is the integration of computational modelling methods with the standard theory of electromagnetic waves. The author presents a set of example programs written in the MATLAB language to support the ideas outlined in the text. The book is organized in a logical progression of ideas, starting with the general idea of wave motion and showing how the equations of electricity and magnetism lead to the existence of electromagnetic waves through the Maxwell’s equations. These ideas are then applied to simple accelerating charge models used in the engineering design of wire antennas. The concepts of resonance and antenna impedance are then treated from a time domain point of view. To reinforce the concepts of wave propagation, a chapter on computer modelling shows the rigorous procedures required to generate accurate numerical models of wave dynamics. The author extends these ideas to consider the properties of aperture antennas, showing how their important properties can be incorporated with the basic themes introduced earlier in the book. Finally, the important topic of wave scattering is introduced, once again from the point of view of time domain concepts.
This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.
The book is primarily designed to cater to the needs of undergraduate and postgraduate students of Electronics and Communication Engineering and allied branches. It also caters for fundamental requirements of professionals working on design and development of antenna and wave propagation related equipment either in research laboratories or industries or academic institutions elsewhere. The book has been written with intent to grasp the basic understanding of theoretical as well as practical aspects of electromagnetic wave propagation and antenna engineering. The text has been aptly scripted considering the requirements of average students who can easily grasp and comprehend the basics of wave propagation and radiation mechanism of varieties of antennas coupled with their critical functionalities, utilities, advantages/disadvantages without any external assistance of teachers or other reference books. The book broaches very well on practical methods of parametric measurements of antenna with right measuring test equipment and associated tools. The last chapter of the book is dedicated to advance technology adopted in design and development of modern antenna. Key features • A fairly large number of well labelled diagrams to provide practical understanding of the concepts. • The placement of numericals at appropriate places develops confidence among readers and enthuses them further to read in depth to crack any regular or competitive examinations. • Chapter summary highlights important points for quick recap and revision before examination. • Well-crafted multiple choice questions with answers at the end of each chapter to stimulate thought process and prepare better for viva-voce and competitive examinations. • Appropriate number of unsolved numerical problems with answers to improve problem solving skill of students.
Aimed at a single-semester course on antennas at the undergraduate level, Antennas and Wave Propagation provides a lucid explanation of the fundamentals of antennas and propagation. This student-friendly text also includes simple design procedures along with a large number of examples and exercises.
In the offered book the fundamentals of electromagnetic fields and waves are discussed based on the great Maxwell equations. The book is conceived as a textbook for serious technical and classical universities in the considered themes. Nevertheless, it can be used, of course, as the reference book for wide group of engineers, researches and practical experts. Material of this book is divided into four main parts connected between them. The first part (Fundamental of Electrodynamics) is devoted to explanation of Maxwell equations and methods of its solutions. Besides classical interpretation the generalized equations are discussed, which take into consideration the scalar magnetic fields. New approaches allow description of so-called longitudinal electromagnetic waves, which have the absolutely non-standard propagation properties, and permit to explain various electrodynamics paradoxes, which cannot be explained in another way. The main characteristics of wave processes in the free space and in transmission lines (feeders) are described. The second part (Radio Wave Propagation) investigates the obvious patterns of diffraction and interference phenomena at radio wave propagation for the obstacle presence in the propagation track, which is typical for all practical situations. Radio wave propagation of various frequency ranges is fulfilled separately taking into consideration the specific features of reflections from the atmosphere parts, attenuation in different media, types of propagating waves, multipath effects, diffraction and non-standard conditions of obstacle overcoming including non-usual ways of atmosphere ducts. The third part is devoted to description of various types and antennas, beginning from simplest (vibrators) and ending by complicate adaptive antenna arrays. Description is fulfilled on the reviewing level with many obvious figures, not to rely on strict mathematical methods, but rather on the concept level. Fourth part includes description of UHF devices, which are the elements’ base of UHF devices including surface and bulk integrated UHF circuits. These results have in many aspects the pioneer character and they are not widely known to experts. Distinctive feature of the offered book is sufficiently simplifies description of the very complicated electrodynamics problems available for the modern students and for young engineers. Of course, it is impossible to deal without mathematics in theses areas but required mathematics can be replaced by the many patterns, which give the chance to understand problems and to determine the complex questions. Sample Chapter(s) Chapter1: GENERAL DEFINITIONS AND RELATIONS OF ELECTRODYNAMICS (498 KB)Contents:FRONT MATTERCHAPTER 1. GENERAL DEFINITIONS AND RELATIONS OF ELECTRODYNAMICSCHAPTER 2. ELECTROMAGNETIC FIELDS AND WAVESCHAPTER 3. MAIN PHYSICAL PHENOMENA AT RADIO WAVES PROPAGATIONCHAPTER 4. PROPAGATION OF RADIO WAVES OF DIFFERENT RANGES AND ITS APPLICATION AREASCHAPTER 5. PRINCIPAL CHARACTERISTICS OF ANTENNASCHAPTER 6. ANTENNAS OF DECIMILLIMETER, MILLIMETER AND CENTIMETER WAVESCHAPTER 7. ANTENNAS OD DECIMETER, METER AND DECAMETER WAVESCHAPTER 8. ANTENNAS OF HECTOMETER, KILOMETER MYRIAMETER WAVESCHAPTER 9. ANTENNAS FOR TV, RADIO RELAY AND SPACE COMMUNICATION LINESCHAPTER 10. ELECTROMAGNETIC COMPATIBILITY OF RADIO ENGINEERING SYSTEMS. ANTENNAS AND THE PROBLEM OF ITS MINIATURIZATIONCHAPTER 11. MAIN COMPONENTS OF THE ELEMENT BASE OF ANTENNA-FEEDER ENGINEERINGCHAPTER 12. BASE ELEMENTS AND FUNCTIONAL UNITS OF ANTENNA- FEEDER ENGINEERINGBACK MATTERReadership: The book is conceived as a textbook for serious technical and classical universities in the considered themes. Nevertheless, it can be used, of course, as the reference book for wide group of engineers, researches and practical experts.