Download Free An Introduction To Electromagnetic Theory Book in PDF and EPUB Free Download. You can read online An Introduction To Electromagnetic Theory and write the review.

A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson’s equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced electric fields, magnetic media, the Maxwell equations, radiation, and time-varying current circuits. Geared toward advanced undergraduate and first-year graduate students, this text features a large selection of problems. It also contains useful appendixes on vector analysis, matrices, elliptic functions, partial differential equations, Fourier series, and conformal transformations. 228 illustrations by the author. Appendixes. Problems. Index.
Perfect for the upper-level undergraduate physics student, Introduction to Electromagnetic Theory presents a complete account of classical electromagnetism with a modern perspective. Its focused approach delivers numerous problems of varying degrees of difficulty for continued study. The text gives special attention to concepts that are important for the development of modern physics, and discusses applications to other areas of physics wherever possible. A generous amount of detail has been in given in mathematical manipulations, and vectors are employed right from the start.
This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.
Electromagnetics (CC BY-SA 4.0) is an open textbook intended to serve as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics, and includes:electric and magnetic fields; electromagnetic properties of materials; electromagnetic waves; and devices that operate according to associated electromagnetic principles including resistors,capacitors, inductors, transformers, generators, and transmission lines. This book employs the "transmission lines first" approach, in which transmission lines are introduced using a lumped-element equivalent circuit model fora differential length of transmission line, leading to one-dimensional wave equations for voltage and current. This book is intended for electrical engineering students in the third year of a bachelor of science degree program. A free electronic version of this book is available at: https://doi.org/10.7294/W4WQ01ZM
Basic Electromagnetic Theory is designed as a concise introduction to electromagnetic field theory emphasizing the physical foundations of the subject. It is aimed at both undergraduates and interested laypersons. It has been based on the author's experience both as a former field theorist (working on quantum electrodynamics) and currently as an applied optical physicist. As such, it covers much material from the standard university syllabus. It also develops a number of themes in greater detail, so as to cover a number of non-standard topics that provide a fuller understanding of the subject. A key aspect to the book is the macroscopic approach to the subject from the outset. Most readers will have some familiarity with the standard mathematics employed, but a review chapter is provided at the beginning to help give some guidance on these topics as they are used throughout the book. Features: •Designed as a concise introduction to electromagnetic field theory emphasizing the physical foundations of the subject •Covers a number of non-standard topics that provide a fuller understanding of the subject
This excellent text covers a year's course. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems.
Discover an innovative and fresh approach to teaching classical electromagnetics at a foundational level Introduction to Electromagnetic Waves with Maxwell's Equations delivers an accessible and practical approach to teaching the well-known topics all electromagnetics instructors must include in their syllabus. Based on the author's decades of experience teaching the subject, the book is carefully tuned to be relevant to an audience of engineering students who have already been exposed to the basic curricula of linear algebra and multivariate calculus. Forming the backbone of the book, Maxwell's equations are developed step-by-step in consecutive chapters, while related electromagnetic phenomena are discussed simultaneously. The author presents accompanying mathematical tools alongside the material provided in the book to assist students with retention and comprehension. The book contains over 100 solved problems and examples with stepwise solutions offered alongside them. An accompanying website provides readers with additional problems and solutions. Readers will also benefit from the inclusion of: A thorough introduction to preliminary concepts in the field, including scalar and vector fields, cartesian coordinate systems, basic vector operations, orthogonal coordinate systems, and electrostatics, magnetostatics, and electromagnetics An exploration of Gauss' Law, including integral forms, differential forms, and boundary conditions A discussion of Ampere's Law, including integral and differential forms and Stoke's Theorem An examination of Faraday's Law, including integral and differential forms and the Lorentz Force Law Perfect for third-and fourth-year undergraduate students in electrical engineering, mechanical engineering, applied maths, physics, and computer science, Introduction to Electromagnetic Waves with Maxwell's Equations will also earn a place in the libraries of graduate and postgraduate students in any STEM program with applications in electromagnetics.
This is a textbook on electromagnetics for undergraduate students in electrical engineering, information, and communications. The book contents are very compact and brief compared to other commonly known electromagnetic books for undergraduate students and emphasizes mathematical aspects of basic electromagnetic theory. The book presents basic electromagnetic theory starting from static fields to time-varying fields. Topics are divided into static electric fields, static magnetic fields, time-varying fields, and electromagnetic waves. The goal of this textbook is to lead students away from memorization, but towards a deeper understanding of formulas that are used in electromagnetic theory. Many formulas commonly used for electromagnetic analysis are mathematically derived from a few empirical laws. Physical interpretations of formulas are de-emphasized. Each important formula is framed to indicate its significance. Primary Theory of Electromagnetics shows a clear and rigorous account of formulas in a consistent manner, thus letting students understand how electromagnetic formulas are related to each other.