Download Free An Introduction To Chaos In Nonequilibrium Statistical Mechanics Book in PDF and EPUB Free Download. You can read online An Introduction To Chaos In Nonequilibrium Statistical Mechanics and write the review.

Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
A valuable introduction for newcomers as well as an important reference and source of inspiration for established researchers, this book provides an up-to-date summary of central topics in the field of nonequilibrium statistical mechanics and dynamical systems theory.Understanding macroscopic properties of matter starting from microscopic chaos in the equations of motion of single atoms or molecules is a key problem in nonequilibrium statistical mechanics. Of particular interest both for theory and applications are transport processes such as diffusion, reaction, conduction and viscosity.Recent advances towards a deterministic theory of nonequilibrium statistical physics are summarized: Both Hamiltonian dynamical systems under nonequilibrium boundary conditions and non-Hamiltonian modelings of nonequilibrium steady states by using thermal reservoirs are considered. The surprising new results include transport coefficients that are fractal functions of control parameters, fundamental relations between transport coefficients and chaos quantities, and an understanding of nonequilibrium entropy production in terms of fractal measures and attractors.The theory is particularly useful for the description of many-particle systems with properties in-between conventional thermodynamics and nonlinear science, as they are frequently encountered on nanoscales.
Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.
"There is a symbiotic relationship between theoretical nonequilibrium statistical mechanics on the one hand and the theory and practice of computer simulation on the other. Sometimes, the initiative for progress has been with the pragmatic requirements of computer simulation and at other times, the initiative has been with the fundamental theory of nonequilibrium processes. This book summarises progress in this field up to 1990"--Publisher's description.
This book describes recent advances in the application of chaos theory to classical scattering and nonequilibrium statistical mechanics generally, and to transport by deterministic diffusion in particular. The author presents the basic tools of dynamical systems theory, such as dynamical instability, topological analysis, periodic-orbit methods, Liouvillian dynamics, dynamical randomness and large-deviation formalism. These tools are applied to chaotic scattering and to transport in systems near equilibrium and maintained out of equilibrium. This book will be bought by researchers interested in chaos, dynamical systems, chaotic scattering, and statistical mechanics in theoretical, computational and mathematical physics and also in theoretical chemistry.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
This book encompasses our current understanding of the ensemble approach to many-body physics, phase transitions and other thermal phenomena, as well as the quantum foundations of linear response theory, kinetic equations and stochastic processes. It is destined to be a standard text for graduate students, but it will also serve the specialist-researcher in this fascinating field; some more elementary topics have been included in order to make the book self-contained.The historical methods of J Willard Gibbs and Ludwig Boltzmann, applied to the quantum description rather than phase space, are featured. The tools for computations in the microcanonical, canonical and grand-canonical ensembles are carefully developed and then applied to a variety of classical and standard quantum situations. After the language of second quantization has been introduced, strongly interacting systems, such as quantum liquids, superfluids and superconductivity, are treated in detail. For the connoisseur, there is a section on diagrammatic methods and applications.In the second part dealing with non-equilibrium processes, the emphasis is on the quantum foundations of Markovian behaviour and irreversibility via the Pauli-Van Hove master equation. Justifiable linear response expressions and the quantum-Boltzmann approach are discussed and applied to various condensed matter problems. From this basis the Onsager-Casimir relations are derived, together with the mesoscopic master equation, the Langevin equation and the Fokker-Planck truncation procedure. Brownian motion and modern stochastic problems such as fluctuations in optical signals and radiation fields briefly make the round.
In the first part of this book, classical nonequilibrium statistical mechanics is developed. Starting from the Hamiltonian dynamics of the molecules, it leads through the irreversible kinetic equations to the level of fluid mechanics. For simple systems, all the transport coefficients are determined by the molecular properties.The second part of the book treats complex systems that require a more extensive use of statistical concepts. Such problems, which are at the forefront of research, include: continuous time random walks, non-Markovian diffusion processes, percolation and related critical phenomena, transport on fractal structures, transport and deterministic chaos. These “strange transport processes” differ significantly from the usual (diffusive) transport. Their inclusion in a general treatise on statistical mechanics is a special feature of this invaluable book./a
The only text to cover both thermodynamic and statistical mechanics--allowing students to fully master thermodynamics at the macroscopic level. Presents essential ideas on critical phenomena developed over the last decade in simple, qualitative terms. This new edition maintains the simple structure of the first and puts new emphasis on pedagogical considerations. Thermostatistics is incorporated into the text without eclipsing macroscopic thermodynamics, and is integrated into the conceptual framework of physical theory.