Download Free An Introduction To Atmospheric Physics Book in PDF and EPUB Free Download. You can read online An Introduction To Atmospheric Physics and write the review.

Contributor biographical information for An introduction to atmospheric physics / David G. Andrews. Bibliographic record and links to related information available from the Library of Congress catalog Biographical text provided by the publisher (may be incomplete or contain other coding). The Library of Congress makes no claims as to the accuracy of the information provided, and will not maintain or otherwise edit/update the information supplied by the publisher. -- -- David Andrews has been a lecturer in Physics at Oxford University and a Physics tutor at Lady Margaret Hall, Oxford, for 20 years. During this time he has had extensive experience of teaching a wide range of physics courses, including atmospheric physics. This experience has included giving lectures to large student audiences and also giving tutorials to small groups. Tutorials, in particular, have given him insights into the kinds of problems that physics students encounter when learning atmospheric physics, and the kinds of topics that excite them. His broad teaching experience has also helped him introduce students to connections between topics in atmospheric physics and related topics in other areas of physics. He feels that it is particularly important to expose today's physics students to the excitements and challenges presented by the atmosphere and climate. He has also published a graduate textbook, Middle Atmosphere Dynamics, with J.R. Holton and C.B. Leovy (1987, Academic Press). He is a Fellow of the Royal Meteorological Society, a Member of the Institute of Physics, and a Member of the American Meteorological Society.
Gravitational effects; Properties of atmospheric gases; Properties and behavior of cloud particles; Solar and terrestrial radiation; Transfer processes and applications; Geomagnetic phenomena; Atmospheric signal phenomena.
Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric dynamics, radiative transfer, severe storms, and global warming. The authors illustrate concepts with full-color, state-of-the-art imagery and cover a vast amount of new information in the field. Extensive numerical and qualitative exercises help students apply basic physical principles to atmospheric problems. There are also biographical footnotes summarizing the work of key scientists, along with a student companion website that hosts climate data; answers to quantitative exercises; full solutions to selected exercises; skew-T log p chart; related links, appendices; and more. The instructor website features: instructor's guide; solutions to quantitative exercises; electronic figures from the book; plus supplementary images for use in classroom presentations. Meteorology students at both advanced undergraduate and graduate levels will find this book extremely useful. - Full-color satellite imagery and cloud photographs illustrate principles throughout - Extensive numerical and qualitative exercises emphasize the application of basic physical principles to problems in the atmospheric sciences - Biographical footnotes summarize the lives and work of scientists mentioned in the text, and provide students with a sense of the long history of meteorology - Companion website encourages more advanced exploration of text topics: supplementary information, images, and bonus exercises
Murry Salby's new book provides an integrated treatment of the processes controlling the Earth-atmosphere system, developed from first principles through a balance of theory and applications. This book builds on Salby's previous book, Fundamentals of Atmospheric Physics. The scope has been expanded into climate, with the presentation streamlined for undergraduates in science, mathematics and engineering. Advanced material, suitable for graduate students and as a resource for researchers, has been retained but distinguished from the basic development. The book provides a conceptual yet quantitative understanding of the controlling influences, integrated through theory and major applications. It leads readers through a methodical development of the diverse physical processes that shape weather, global energetics and climate. End-of-chapter problems of varying difficulty develop student knowledge and its quantitative application, supported by answers and detailed solutions online for instructors.
The extraordinary growth and development of atmospheric sciences during the last dec ades, and the concern for certain applied problems, such as those related to the environ ment, have prompted the introduction of college and university courses in this field. There is consequently a need for good textbooks. A few appropriate books have appeared in the last few years, aimed at a variety of levels and having different orientations. Most of them are of rather limited scope; in par ticular, a number of them are restricted to the field of dynamics and its meteorological applications. There is still a need for an elementary, yet comprehensive, survey of the terrestrial atmosphere. This short volume attempts to fill that need. This book is intended as a textbook that can be used for a university course at a second or third year level. It requires only elementary mathematics and such knowledge of physics as should be acquired in most first-year general physicS courses. It may serve in two ways. A general review of the field is provided for students who work or plan to work in other fields (such as geophysics, geography, environmental sciences, space research), but are interested in acquiring general information; at the same time, it may serve as a general and elementary introduction for students who will later specialize in some area of atmospheric science.
This introduction to the principles of atmospheric physics and chemistry has been designed for physics or chemistry undergraduates with no prior knowledge of the subject. All aspects of the lower and middle atmospheres are treated as ultimate consequences
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
Fundamentals of Atmospheric Physics emphasizes the interrelationships of physical and dynamical meteorology. The text unifies four major subject areas: atmospheric thermodynamics, hydrostatic equilibrium and stability, atmospheric radiation and clouds, and atmospheric dynamics. These fundamental areas serve as cornerstones of modern atmospheric research on environmental issues like global change and ozone depletion. Physical concepts underlying these subject areas are developed from first principles, providing a self-contained text for students and scholars from diverse backgrounds. The presentation is Lagrangian (single-body problems) in perspective, with a balance of theory and application. Each chapter includes detailed and extensive problems; selected answers are provided, as are appendices of various constants. The text requires a thorough foundation in calculus. - Presents a comprehensive introduction to atmospheric thermodynamics, hydrostatics, radiation and clouds, and dynamics - Develops concepts from first principles, providing a self-contained volume for readers from diverse backgrounds - Emphasizes the interaction of physical processes shaping global problems of atmospheric energetics, transport, and chemistry - Provides a balance of theory and applications, with examples drawn from a wide range of phenomena figuring in global atmospheric research - Extensively illustrated with global satellite imagery and analyses and photographs of laboratory simulations - Exercises apply to a wide range of topical problems