Download Free An Improved Measurement Of The Muon Neutrino Charged Current Quasi Elastic Cross Section On Hydrocarbon At Minerva Book in PDF and EPUB Free Download. You can read online An Improved Measurement Of The Muon Neutrino Charged Current Quasi Elastic Cross Section On Hydrocarbon At Minerva and write the review.

​This thesis represents the first double differential measurement of quasi-elastic anti-neutrino scattering in the few GeV range--a region of substantial theoretical and experimental interest as it is the kinematic region where studies of charge-parity (CP) violation in the neutrino sector most require precise understanding of the differences between anti-neutrino and neutrino scatter. This dissertation also presents total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which is then compared to measurements from previous experiments. Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure CP violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. The measurement described herewith determines the nuclear and instrumental effects that must be understood to undertake precision neutrino physics. As well as being useful to help reduce oscillation experiments' uncertainty, this data can also be used to study the prevalence of various correlation and final-state interaction effects within the nucleus. In addition to being a substantial scientific advance, this thesis also serves as an outstanding introduction to the field of experimental neutrino physics for future students.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.
Experimental Techniques in High-Energy Nuclear and Particle Physics is a compilation of outstanding technical papers and reviews of the ingenious methods developed for experimentation in modern nuclear and particle physics. This book, a second edition, provides a balanced view of the major tools and technical concepts currently in use, and elucidates the basic principles that underly the detection devices. Several of the articles in this volume have never been published, or have appeared in relatively inaccessible journals. Although the emphasis is on charged-particle tracking and calorimetry, general reviews of ionization detectors and Monte Carlo techniques are also included.This book serves as a compact source of reference for graduate students and experimenters in the fields of nuclear and particle physics, seeking information on some of the major ideas and techniques developed for modern experiments in these fields.
A comprehensive introduction to neutrino physics with detailed description of neutrinos and their properties.
This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models. More specifically, it presents recent techniques and results in estimation of mean and covariance matrices with a high-dimensional setting that implies singularity of the sample covariance matrix. Such high-dimensional models can be analyzed by using the same arguments as for low-dimensional models, thus yielding a unified approach to both high- and low-dimensional shrinkage estimations. The unified shrinkage approach not only integrates modern and classical shrinkage estimation, but is also required for further development of the field. Beginning with the notion of decision-theoretic estimation, this book explains matrix theory, group invariance, and other mathematical tools for finding better estimators. It also includes examples of shrinkage estimators for improving standard estimators, such as least squares, maximum likelihood, and minimum risk invariant estimators, and discusses the historical background and related topics in decision-theoretic estimation of parameter matrices. This book is useful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics.
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures
"Recent advancements in generation of intense X-ray laser ultrashort pulses open opportunities for particle acceleration in solid-state plasmas. Wakefield acceleration in crystals or carbon nanotubes shows promise of unmatched ultra-high accelerating gradients and possibility to shape the future of high energy physics colliders. This book summarizes the discussions of the "Workshop on Beam Acceleration in Crystals and Nanostructures" (Fermilab, June 24-25, 2019), presents next steps in theory and modeling and outlines major physics and technology challenges toward proof-of-principle demonstration experiments"--Publisher's website.