Download Free An Experimental Exploration Of The Quantum Vacuum Through The Casimir Force Book in PDF and EPUB Free Download. You can read online An Experimental Exploration Of The Quantum Vacuum Through The Casimir Force and write the review.

Casimir effects serve as primary examples of directly observable manifestations of the nontrivial properties of quantum fields, and as such are attracting increasing interest from quantum field theorists, particle physicists, and cosmologists. Furthermore, though very weak except at short distances, Casimir forces are universal in the sense that all material objects are subject to them. They are thus also an increasingly important part of the physics of atom-surface interactions, while in nanotechnology they are being investigated not only as contributors to ‘stiction’ but also as potential mechanisms for actuating micro-electromechanical devices. While the field of Casimir physics is expanding rapidly, it has reached a level of maturity in some important respects: on the experimental side, where most sources of imprecision in force measurements have been identified as well as on the theoretical side, where, for example, semi-analytical and numerical methods for the computation of Casimir forces between bodies of arbitrary shape have been successfully developed. This book is, then, a timely and comprehensive guide to the essence of Casimir (and Casimir-Polder) physics that will have lasting value, serving the dual purpose of an introduction and reference to the field. While this volume is not intended to be a unified textbook, but rather a collection of largely independent chapters written by prominent experts in the field, the detailed and carefully written articles adopt a style that should appeal to non-specialist researchers in the field as well as to a broader audience of graduate students.
This review volume is intended to survey the field of quantum fluctuational phenomena induced by material bodies, which is commonly encompassed under the name of Casimir physics. H B G Casimir first discovered that zero-point fluctuations in the electromagnetic field caused an attractive force between closely separated metallic plates. Now — 75 years later — the field is burgeoning, with numerous experimental verifications and applications to practical devices starting to emerge.In this book, new ideas about Casimir physics are brought to bear on such diverse subjects as cosmology, where the Casimir energy may explain the dark energy that causes the cosmic repulsion, and nonstatic regimes, such as Casimir or quantum friction. Unsolved problems, including divergences in Casimir self-energies, the meaning of local energy densities in inhomogeneous backgrounds, and discrepancies between theory and experiment, are treated in some detail. It is hoped that this collection of papers will serve as an introduction to the field for newcomers to the subject, and that it will inspire a new burst of research into the nature of the quantum vacuum.
In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction OCo which may be either attractive or repulsive OCo between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically transparent Green''s function techniques, and makes applications from quarks to the cosmos, as well as observable consequences in condensed matter systems. It is aimed at graduate students and researchers in theoretical physics, quantum field theory, and applied mathematics. Contents: Introduction to the Casimir Effect; Casimir Force Between Parallel Plates; Casimir Force Between Parallel Dielectrics; Casimir Effect with Perfect Spherical; The Casimir Effect of a Dielectric Ball: The Equivalence of the Casimir Effect and van der Waals Forces; Application to Hadronic Physics: Zero-Point Energy in the Bag Model; Casimir Effect in Cylindrical Geometries; Casimir Effect in Two Dimensions: The Maxwell-Chern-Simons Casimir Effect; Casimir Effect on a D -dimensional Sphere; Cosmological Implications of the Casimir Effect; Local Effects; Sonoluminescene and the Dynamical Casimir Effect; Radiative Corrections to the Casimir Effect; Conclusions and Outlook; Appendices: Relation of Contour Integral Method to Green''s Function Approach; Casimir Effect for a Closed String. Readership: High-energy, condensed-matter and nuclear physicists."
Of value to the general scientific public, this is the first book in the world scientific literature devoted to the Casimir effect. This topic has important applications in the fields of elementary particle physics, statistical physics, quantum field theory, gravitation and cosmology.
In spite of the impressive predictive power and strong mathematical structure of quantum mechanics, the theory has always suffered from important conceptual problems. Some of these have never been solved. Motivated by this state of affairs, a number of physicists have worked together for over thirty years to develop stochastic electrodynamics, a physical theory aimed at finding a conceptually satisfactory, realistic explanation of quantum phenomena. This is the first book to present a comprehensive review of stochastic electrodynamics, from its origins to present-day developments. After a general introduction for the non-specialist, a critical discussion is presented of the main results of the theory as well as of the major problems encountered. A chapter on stochastic optics and some interesting consequences for local realism and the Bell inequalities is included. In the final chapters the authors propose and develop a new version of the theory that brings it in closer correspondence with quantum mechanics and sheds some light on the wave aspects of matter and the linkage with quantum electrodynamics. Audience: The volume will be of interest to scholars and postgraduate students of theoretical and mathematical physics, foundations and philosophy of physics, and teachers of theoretical physics and quantum mechanics, electromagnetic theory, and statistical physics (stochastic processes).
A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and Aristotle did not believe a vacuum was possible. How could nothing be something, they asked? Boi traces the evolution of the quantum vacuum from an abstract concept in ancient Greece to its fundamental role in quantum field theory and string theory in modern times. The quantum vacuum is a complex entity, one essential to understanding some of the most intriguing issues in twentieth-century physics, including cosmic singularity, dark matter and energy, and the existence of the Higgs boson particle. Boi explains with simple clarity the relevant theories and fundamental concepts of the quantum vacuum. Theoretical, mathematical, and particle physicists, as well as researchers and students of the history and philosophy of physics, will find The Quantum Vacuum to be a stimulating and engaging primer on the topic.
In modern physics, the classical vacuum of tranquil nothingness has been replaced by a quantum vacuum with fluctuations of measurable consequence. In The Quantum Vacuum, Peter Milonni describes the concept of the vacuum in quantum physics with an emphasis on quantum electrodynamics. He elucidates in depth and detail the role of the vacuum electromagnetic field in spontaneous emission, the Lamb shift, van der Waals, and Casimir forces, and a variety of other phenomena, some of which are of technological as well as purely scientific importance. This informative text also provides an introduction based on fundamental vacuum processes to the ideas of relativistic quantum electrodynamics and quantum field theory, including renormalization and Feynman diagrams. Experimental as well as theoreticalaspects of the quantum vacuum are described, and in most cases details of mathematical derivations are included. Chapter 1 of The Quantum Vacuum - published in advance in The American Journal of Physics (1991)-was later selected by readers as one of the Most Memorable papers ever published in the 60-year history of the journal. This chapter provides anexcellent beginning of the book, introducing a wealth of information of historical interest, the results of which are carefully woven into subsequent chapters to form a coherent whole. - Does not assume that the reader has taken advanced graduate courses, making the text accessible to beginning graduate students - Emphasizes the basic physical ideas rather than the formal, mathematical aspects of the subject - Provides a careful and thorough treatment of Casimir and van der Waals forces at a level of detail not found in any other book on this topic - Clearly presents mathematical derivations
The official research journal of the Society for Scientific Exploration. Provides a professional forum for presentation, scrutiny, and criticism of scientific research on topics outside the established disciplines of mainstream science. A critical forum of rationality and observational evidence for the often strange claims at the fringes of science.
Practical Conversion of Zero-Point Energy is the authoritative guide to the latest discoveries, tools and high-school level physics behind the most ubiquitous source of energy for the future. One year in the making, it is profusely illustrated and exhaustively researched with almost 300 references by an engineering physicist and noted expert in the field of emerging energy technology. Revised edition now contains a complete summary guide to the quantum "tricks of the trade." Quite possibly the most advanced electrical energy source book available today.
This invaluable book provides a broad and comprehensive introduction to the fascinating and beautiful subject of timeless approaches in physics, focusing the attention in particular on significant models developed recently by the author. It presents relevant and novel perspectives in 21st century theoretical physics as regards the arena of physical processes and its geometry (both in special relativity, quantum mechanics, the quantum gravity domain and about the quantum vacuum). The timeless approach may be used as a source of reference by researchers in theoretical physics and at the same time it is also suitable for graduate students in physics who wish to have an extend view of some of the classic and fundamental models in the subject.