Download Free An Exercise Book In Algebra Book in PDF and EPUB Free Download. You can read online An Exercise Book In Algebra and write the review.

This book, the first of two volumes, contains over 250 selected exercises in Algebra which have featured as exam questions for the Arithmetic course taught by the authors at the University of Pisa. Each exercise is presented together with one or more solutions, carefully written with consistent language and notation. A distinguishing feature of this book is the fact that each exercise is unique and requires some creative thinking in order to be solved. The themes covered in this volume are: mathematical induction, combinatorics, modular arithmetic, Abelian groups, commutative rings, polynomials, field extensions, finite fields. The book includes a detailed section recalling relevant theory which can be used as a reference for study and revision. A list of preliminary exercises introduces the main techniques to be applied in solving the proposed exam questions. This volume is aimed at first year students in Mathematics and Computer Science.
Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
This is a short text in linear algebra, intended for a one-term course. In the first chapter, Lang discusses the relation between the geometry and the algebra underlying the subject, and gives concrete examples of the notions which appear later in the book. He then starts with a discussion of linear equations, matrices and Gaussian elimination, and proceeds to discuss vector spaces, linear maps, scalar products, determinants, and eigenvalues. The book contains a large number of exercises, some of the routine computational type, while others are conceptual.
Expert instruction and plenty of practice to reinforce advanced math skills Presents concepts with application to natural sciences, engineering, economics, computer science, and other branches of mathematics Complementary to most linear algebra courses or as a refresher text More than 500 exercises and answers Hundreds of solved problems The Practice Makes Perfect series has sold more than 1 million copies worldwide
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.