Download Free An Evaluation And Application Of Paleoceanographic Proxies In The Gulf Of California Book in PDF and EPUB Free Download. You can read online An Evaluation And Application Of Paleoceanographic Proxies In The Gulf Of California and write the review.

Paleoceanographic proxies provide infonnation for reconstructions of the past, including climate changes, global and regional oceanography, and the cycles of biochemical components in the ocean. These prox ies are measurable descriptors for desired but unobservable environmental variables such as tempera ture, salinity, primary productivity, nutrient content, or surface-water carbon dioxide concentrations. The proxies are employed in a manner analogous to oceanographic methods. The water masses are first characterized according to their specific physical and chemical properties, and then related to particular assemblages of certain organisms or to particular element or isotope distributions. We have a long-standing series of proven proxies available. Marine microfossil assemblages, for instance, are employed to reconstruct surface-water temperatures. The calcareous shells of planktonic and benthic microorgan isms contain a wealth of paleoceanographic information in their isotopic and elemental compositions. Stable oxygen isotope measurements are used to detennine ice volume, and MglCa ratios are related to water temperatures, to cite a few examples. Organic material may also provide valuable infonnation, e. g. , about past productivity conditions. Studying the stable carbon isotope composition of bulk organic matter or individual marine organic components may provide a measure of past surface-water CO 2 conditions within the bounds of certain assumptions. Within the scope of paleoceanographic investigations, the existing proxies are continuously evolving and improving, while new proxies are being studied and developed. The methodology is improved by analysis of samples from the water column and surface sediments, and through laboratory experiments.
Paleoceanographic proxies provide infonnation for reconstructions of the past, including climate changes, global and regional oceanography, and the cycles of biochemical components in the ocean. These prox ies are measurable descriptors for desired but unobservable environmental variables such as tempera ture, salinity, primary productivity, nutrient content, or surface-water carbon dioxide concentrations. The proxies are employed in a manner analogous to oceanographic methods. The water masses are first characterized according to their specific physical and chemical properties, and then related to particular assemblages of certain organisms or to particular element or isotope distributions. We have a long-standing series of proven proxies available. Marine microfossil assemblages, for instance, are employed to reconstruct surface-water temperatures. The calcareous shells of planktonic and benthic microorgan isms contain a wealth of paleoceanographic information in their isotopic and elemental compositions. Stable oxygen isotope measurements are used to detennine ice volume, and MglCa ratios are related to water temperatures, to cite a few examples. Organic material may also provide valuable infonnation, e. g. , about past productivity conditions. Studying the stable carbon isotope composition of bulk organic matter or individual marine organic components may provide a measure of past surface-water CO 2 conditions within the bounds of certain assumptions. Within the scope of paleoceanographic investigations, the existing proxies are continuously evolving and improving, while new proxies are being studied and developed. The methodology is improved by analysis of samples from the water column and surface sediments, and through laboratory experiments.
The present volume is the first in a series of two books dedicated to the paleoceanography of the Late Cenozoic ocean. The need for an updated synthesis on paleoceanographic science is urgent, owing to the huge and very diversified progress made in this domain during the last decade. In addition, no comprehensive monography still exists in this domain. This is quite incomprehensible in view of the contribution of paleoceanographic research to our present understanding of the dynamics of the climate-ocean system. The focus on the Late Cenozoic ocean responds to two constraints. Firstly, most quantitative methods, notably those based on micropaleontological approaches, cannot be used back in time beyond a few million years at most. Secondly, the last few million years, with their strong climate oscillations, show specific high frequency changes of the ocean with a relatively reduced influcence of tectonics. The first volume addresses quantitative methodologies to reconstruct the dynamics of the ocean andthe second, major aspects of the ocean system (thermohaline circulation, carbon cycle, productivity, sea level etc.) and will also present regional synthesis about the paleoceanography of major the oceanic basins. In both cases, the focus is the “open ocean leaving aside nearshore processes that depend too much onlocal conditions. In this first volume, we have gathered up-to-date methodologies for the measurement and quantitative interpretation of tracers and proxies in deep sea sediments that allow reconstruction of a few key past-properties of the ocean( temperature, salinity, sea-ice cover, seasonal gradients, pH, ventilation, oceanic currents, thermohaline circulation, and paleoproductivity). Chapters encompass physical methods (conventional grain-size studies, tomodensitometry, magnetic and mineralogical properties), most current biological proxies (planktic and benthic foraminifers, deep sea corals, diatoms, coccoliths, dinocysts and biomarkers) and key geochemical tracers (trace elements, stable isotopes, radiogenic isotopes, and U-series). Contributors to the book and members of the review panel are among the best scientists in their specialty. They represent major European and North American laboratories and thus provide a priori guarantees to the quality and updat of the entire book. Scientists and graduate students in paleoclimatology, paleoceanography, climate modeling, and undergraduate and graduate students in marine geology represent the target audience. This volume should be of interest for scientists involved in several international programs, such as those linked to the IPCC (IODP – Integrated Ocean Drilling Program; PAGES – Past Global Changes; IMAGES – Marine Global Changes; PMIP: Paleoclimate Intercomparison Project; several IGCP projects etc.), That is, all programs that require access to time series illustrating changes in the climate-ocean system. Presents updated techniques and methods in paleoceanography Reviews the state-of-the-art interpretation of proxies used for quantitative reconstruction of the climate-ocean system Acts as a supplement for undergraduate and graduate courses in paleoceanography and marine geology
This study focused on the development of Mg/Ca or Sr/Ca thermometry from modern shallow-water (continental shelf) benthic foraminifera and Ostracoda for reconstructing paleotemperature. The [delta]18O[paleo-sw] estimates were attempted by combining the Mg-derived temperature and [delta]18O in fossil foraminifera from terrestrial marine rocks, and the applicability of such estimates to paleoceanography was evaluated.
Most of our information about the evolution of Earth's ocean-climate system comes from the analysis of sediments laid down in the past. For example, the microfossil assemblage reflects the temperature, salinity and nutrient abundance of the water in which the organisms lived, while the chemical and isotopic composition of biogenic carbonates may be used to reconstruct past variations in the operation of the carbon cycle, as well as changes in ocean circulation. Nevertheless, understanding the link between these sediment variables (or 'proxies') and environmental conditions is not straightforward. This volume adopts a novel approach by bringing together palaeontologists, geochemists and palaeoceanographers, who contribute evidence that is required to better constrain these proxies. Topics include: (i) processes of biomineralization, and their effect on the chemical and isotopic composition of different organisms; (ii) proxy validation, including field, laboratory and theoretical studies; (iii) the links between modern and fossil organisms
This thorough reference shows how stable isotopes can be applied to understanding the palaeoenvironment, with chapters on the interpretation of isotopes in water, tree rings, bones and teeth, lake sediments, speleothems and marine sediments. The book offers detailed advice on calibration, including a multi-proxy approach, using isotope signals from different materials or combined with other palaeoenvironmental techniques, to enhance the reliability of readings.