Download Free An Elementary Course Of Plane Geometry Book in PDF and EPUB Free Download. You can read online An Elementary Course Of Plane Geometry and write the review.

The book constitutes an elementary course on Plane Euclidean Geometry, pitched at pre-university or at advanced high school level. It is a concise book treating the subject axiomatically, but since it is meant to be a first introduction to the subject, excessive rigour is avoided, making it appealing to a younger audience as well. The aim is to cover the basics of the subject, while keeping the subject lively by means of challenging and interesting exercises. This makes it relevant also for students participating in mathematics circles and in mathematics olympiads. Each section contains several problems, which are not purely drill exercises, but are intended to introduce a sense of "play" in mathematics, and inculcate appreciation of the elegance and beauty of geometric results. There is an abundance of colour pictures illustrating results and their proofs. A section on hints and a further section on detailed solutions to all the exercises appear at the end of the book, making the book ideal also for self-study.
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
This book, first published in 2004, is an example based and self contained introduction to Euclidean geometry with numerous examples and exercises.
Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries.
"Of chief interest to mathematicians, but physicists and others will be fascinated ... and intrigued by the fruitful use of non-Cartesian methods. Students ... should find the book stimulating." — British Journal of Applied Physics This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. Its wide coverage, which includes both algebraic and transcendental curves, extends to unusual properties of familiar curves along with the nature of lesser known curves. Informative discussions of the line, circle, parabola, ellipse, and hyperbola presuppose only the most elementary facts. The less common curves — cissoid, strophoid, spirals, the leminscate, cycloid, epicycloid, cardioid, and many others — receive introductions that explain both their basic and advanced properties. Derived curves-the involute, evolute, pedal curve, envelope, and orthogonal trajectories-are also examined, with definitions of their important applications. These range through the fields of optics, electric circuit design, hydraulics, hydrodynamics, classical mechanics, electromagnetism, crystallography, gear design, road engineering, orbits of subatomic particles, and similar areas in physics and engineering. The author represents the points of the curves by complex numbers, rather than the real Cartesian coordinates, an approach that permits simple, direct, and elegant proofs.