Download Free An Earth Anchor System Book in PDF and EPUB Free Download. You can read online An Earth Anchor System and write the review.

Treating anchorages as a direct application of the laws of statics and the theories governing the transfer of load, this book focuses on designs that are safe and reasonably priced. It is divided into two parts. Following a general introduction in the first chapter, Part One goes on to explore anchor systems, components, installation and construction details. Presents special anchor systems such as extractable, compression-type, multibell, and regroutable anchors. Analyzes the transfer of load and its relation to failure modes and anchor load capacity; deals with design considerations; covers mechanisms and types of corrosion; and details anchor stressing, testing programs, and evaluation standards. Part Two considers uses and applications and design aspects of anchored structures; presents design examples of practical value and reasonable simplicity; and incorporates examples and case histories.
Primarily designed and constructed to resist outwardly directed loads imposed on the foundation of a structure, anchor plates play an important role in the design of structures (including seawalls, transmission towers, tunnels, buried pipelines, and retaining walls). Design and Construction of Soil Anchor Plates focuses on the various theories based on the design and construction techniques of anchor plates in soil mechanics. The focus of this reference is on design methods, theories, and procedures for constructing permanent or temporary ground anchors and anchored systems. Topics include: General Requirements of Vertical Anchor Plates and Design Criteria, Estimation of Ultimate Capacity in Vertical Anchor Plates, General Requirements of Vertical Anchor Plates and Design Criteria, Type and Length of Inclined Anchor Plates, Early Theories on Anchor Plates in Multi-Layers Soil, and Basic Theories on Passive Pressure in Vertical Anchor Plates. With this reference, researchers and designers will find a valuable guide to the various theories, techniques, and equations for anchor design. - Basic theories on passive pressure in vertical anchor plates - Estimation of ultimate capacity in vertical anchor plates - Uplift capacity for shallow anchor plates - Requirements of vertical anchor plates and design criteria - Type and length of inclined anchor plates
Anchors are primarily used in the construction of foundations of earth-supported and earth-retaining structures. The fundamental reason for using earth anchors in construction is to transmit the outwardly directed load to the soil at a greater depth and/or farther away from the structure. Although earth anchors have been used in practice for several hundred years, proper theoretical developments for purposes of modern engineering designs have taken place only during the past 40 to 45 years. This book summarizes most theoretical and experimental works directed toward the development of proper relationships for ultimate and allowable holding capacity of earth anchors. J. Ross Publishing offers a supplemental download — A customizable PowerPoint instructional slide presentation prepared by the authors that complements the material covered in the book, chapter-by-chapter.
The definitive reference for driven piles. Nearly six years in the making, Pile Driving by Pile Buck is a comprehensive reference book on the history of pile driving and driven piles, the various types of piles, the equipment used to install them, the design of driven pile foundations, the installation of driven piles and the capacity verification of driven piles. Not just another theoretical exercise, Pile Driving by Pile Buck gives practical procedures and equipment configurations for the successful installation of virtually any driven pile foundations. Included with the text are a wealth of photographs without equal in this type of publication; the photos alone are worth the price of the book, and help bring the reader "on site" to understand the whole process of pile driving--one of the oldest construction techniques known.
An unbiased, comprehensive review of helical pile technology and applications Helical piles have risen from being merely an interesting alternative for special cases to a frequently requested, more widely accepted deep foundation adopted into the 2009 International Building Code. The first alternative to manufacturer-produced manuals, Howard Perko's Helical Piles: A Practical Guide to Design and Installation answers the industry's need for an unbiased and universally applicable text dedicated to the design and installation of helical piles, helical piers, screw piles, and torque anchors. Fully compliant with ICC-Evaluation Services, Inc., Acceptance Criteria for Helical Foundation Systems and Devices (AC358), this comprehensive reference guides construction professionals to manufactured helical pile systems and technology, providing objective insights into the benefits of helical pile foundations over driven or cast foundation systems, and recommending applications where appropriate. After introducing the reader to the basic features, terminology, history, and modern applications of helical pile technology, chapters discuss: Installation and basic geotechnics Bearing and pullout capacity Capacity verification through torque Axial load testing, reliability, and sizing Expansive soil and lateral load resistance Corrosion and life expectancy Foundation, earth retention, and underpinning systems Foundation economics Select proprietary systems IBC and NYC Building codes Covering such issues of concern as environmental sustainability, Helical Piles provides contractors and engineers as well as students in civil engineering with a practical, real-world guide to the design and installation of helical piles.
Retaining structures form an important component of many civil engineering and geotechnical engineering projects. Careful design and construction of these structures is essential for safety and longevity. This new edition provides significantly more support for non-specialists, background to uncertainty of parameters and partial factor issues that underpin recent codes (e.g. Eurocode 7), and comprehensive coverage of the principles of the geotechnical design of gravity walls, embedded walls and composite structures. It is written for practising geotechnical, civil and structural engineers; and forms a reference for engineering geologists, geotechnical researchers and undergraduate civil engineering students.
Topical Issues of Rational Use of Natural Resources contains the contributions presented at International Forum-Contest of Young Researchers 2018 (St. Petersburg Mining University, Russia, 18-20 April 2018). The Forum-Contest is an excellent opportunity for young researchers to present their work to the scientific community involved in the extraction and processing of natural resources. The topics of the book include: • Prospecting and exploration of mineral deposits • Development of solid minerals deposits and safety of mining operations • Development of oil and gas fields and transportation of crude hydrocarbons • Modern technologies of construction work applied in the mineral complex • Metallurgy. Physical and chemical technologies of hydrocarbons treatment • Equipment, transport service and energy efficiency of mining enterprises • Economic tools of innovative development • Environmental protection • Geo information systems and nanotechnologies Topical Issues of Rational Use of Natural Resources collects the best reports presented at the Forum-Contest, and will be of interest to academics and professionals involved in the extraction and processing of natural resources.