Download Free An Architecture Based Approach For Change Impact Analysis Of Software Intensive Systems Book in PDF and EPUB Free Download. You can read online An Architecture Based Approach For Change Impact Analysis Of Software Intensive Systems and write the review.

This cumulative habilitation thesis, proposes concepts for (i) modelling and analysing dependability based on architectural models of software-intensive systems early in development, (ii) decomposition and composition of modelling languages and analysis techniques to enable more flexibility in evolution, and (iii) bridging the divergent levels of abstraction between data of the operation phase, architectural models and source code of the development phase.
In this work, the authors analysed the co-dependency between models and analyses, particularly the structure and interdependence of artefacts and the feature-based decomposition and composition of model-based analyses. Their goal is to improve the maintainability of model-based analyses. They have investigated the co-dependency of Domain-specific Modelling Languages (DSMLs) and model-based analyses regarding evolvability, understandability, and reusability.
IoT applications perceive and interact with the environment via smart devices and cloud services. When operating such applications one is faced with the challenge of configuring the smart devices and the cloud services in a manner, which achieves a high data quality at low operational costs. This work supports IoT operators with IoT collection strategies and cost optimization functions for data qualities, which are influenced by the interplay of smart device and cloud service configurations.
Developing variable systems faces many challenges. Dependencies between interrelated artifacts within a product variant, such as code or diagrams, across product variants and across their revisions quickly lead to inconsistencies during evolution. This work provides a unification of common concepts and operations for variability management, identifies variability-related inconsistencies and presents an approach for view-based consistency preservation of variable systems.
Although tremendous progress has been made in Artificial Intelligence (AI), it entails new challenges. The growing complexity of learning tasks requires more complex AI components, which increasingly exhibit unreliable behaviour. In this book, we present a model-driven approach to model architectural safeguards for AI components and analyse their effect on the overall system reliability.
Business processes and information systems evolve constantly and affect each other in non-trivial ways. Aligning security requirements between both is a challenging task. This work presents an automated approach to extract access control requirements from business processes with the purpose of transforming them into a) access permissions for role-based access control and b) architectural data flow constraints to identify violations of access control in enterprise application architectures.
Complex software systems are described with multiple artifacts, such as code, design diagrams and others. Ensuring their consistency is crucial and can be automated with transformations for pairs of artifacts. We investigate how developers can combine independently developed and reusable transformations to networks that preserve consistency between more than two artifacts. We identify synchronization, compatibility and orchestration as central challenges, and we develop approaches to solve them.
Data-intensive systems are software applications that process and generate Big Data. Data-intensive systems support the use of large amounts of data strategically and efficiently to provide intelligence. For example, examining industrial sensor data or business process data can enhance production, guide proactive improvements of development processes, or optimize supply chain systems. Designing data-intensive software systems is difficult because distribution of knowledge across stakeholders creates a symmetry of ignorance, because a shared vision of the future requires the development of new knowledge that extends and synthesizes existing knowledge. Knowledge Management in the Development of Data-Intensive Systems addresses new challenges arising from knowledge management in the development of data-intensive software systems. These challenges concern requirements, architectural design, detailed design, implementation and maintenance. The book covers the current state and future directions of knowledge management in development of data-intensive software systems. The book features both academic and industrial contributions which discuss the role software engineering can play for addressing challenges that confront developing, maintaining and evolving systems;data-intensive software systems of cloud and mobile services; and the scalability requirements they imply. The book features software engineering approaches that can efficiently deal with data-intensive systems as well as applications and use cases benefiting from data-intensive systems. Providing a comprehensive reference on the notion of data-intensive systems from a technical and non-technical perspective, the book focuses uniquely on software engineering and knowledge management in the design and maintenance of data-intensive systems. The book covers constructing, deploying, and maintaining high quality software products and software engineering in and for dynamic and flexible environments. This book provides a holistic guide for those who need to understand the impact of variability on all aspects of the software life cycle. It leverages practical experience and evidence to look ahead at the challenges faced by organizations in a fast-moving world with increasingly fast-changing customer requirements and expectations.