Download Free An Analytical Investigation Of The Effects Of Water Injection On Combustion Products And Detonation In Spark Ignition Engines Book in PDF and EPUB Free Download. You can read online An Analytical Investigation Of The Effects Of Water Injection On Combustion Products And Detonation In Spark Ignition Engines and write the review.

Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 24 (thesis year 1979) a total of 10,033 theses titles from 26 Canadian and 215 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. While Volume 24 reports these submitted in 1979, on occasion, certain universities do report theses submitted in previous years but not reported at the time.
Abstract : One of the limiting factors influencing the improvement of engine efficiency in gasoline engines is engine knock. Several techniques including reduced compression ratio, cooled exhaust gas recirculation, using high premium fuels, late intake valve closing have been used to mitigate knock at different operating regimes. Water due to its higher latent heat of vaporization compared to gasoline fuel has been used to reduce the charge temperature and mitigate knock. When water is injected into the intake manifold or into the cylinder, it evaporates by exchanging energy from the surrounding mixture resulting in charge cooling. This allows the engine to be run with advanced spark timing without engine knock resulting in better engine performance. With this motive, the impact of water injection on the combustion characteristics of gasoline direct injection engine was investigated. The research was conducted in three parts. First, an analytical model was developed using the principles of thermodynamics to determine the impact of direct water injection on the cycle efficiency. An ideal thermodynamic cycle with constant volume heat addition was considered for the analysis consisting of air, fuel and water mixture. State properties of the mixture were determined at different points in the thermodynamic cycle and efficiency was calculated. This established a baseline on the amount of water that can be injected into the cylinder and its impact on the overall cycle efficiency. This was followed by spray studies on a spray and combustion vessel that were conducted at engine conditions by varying the ambient conditions to determine the vaporization of water and water methanol sprays. This study gives a comparison of the amount of water that can be vaporized from the thermodynamic model. Experimental studies were conducted on a single cylinder engine with a compression ratio of 10.9:1. Baseline tests without water injection were run using gasoline fuel blended with 10% Ethanol (E10) (Anti-Knock Index = 87.0) injected directly into the cylinder. Impact of water injection was studied by injecting water and blends of water and methanol in the intake manifold at different water fuel ratios within controlled knock limit. Furthermore, injection mechanism was changed to direct water injection and tests were conducted at the same conditions to compare the effect of water injection mechanism on the combustion and knock performance.
Summary: An investigation has been made of the effectiveness of water injection into the combustion end zone of a spark-ignition engine cylinder for the suppression of knock. Pressure-time recoreds obtained show that injection of water at 60° B.T.C. on the compression stroke at a water-fuel ratio of 0.3 rendered M-3 fuel as good as S-3 fuel from an antiknock consideration. The optimum crank angle for injection of water into the end zone was found to be critical. As the injection angle was increased beyond the optimum, the quantity of water required to suppress knock increased to 3.6 water-fuel ratio at 132° B.T.C. The water quantity could not be increased beyond 3.6 water-fuel ration because of injection-pump limitations; however, a further increase in the injection angle up to the earliest angle obtainable, which was 20° A.T.C. on the intake stroke, continuously increased the knock intensity. The engine operating conditions of the tests did not simulate those encountered in flight, especially with regard to the operating speed of 570 rpm. For this reason the results should only be regarded as of theoretical importance until further investigation has been made.