Download Free An Analog Eigenvalue Technique Book in PDF and EPUB Free Download. You can read online An Analog Eigenvalue Technique and write the review.

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Mathematical Techniques and Physical Applications provides a wide range of basic mathematical concepts and methods, which are relevant to physical theory. This book is divided into 10 chapters that cover the different branches of traditional mathematics. This book deals first with the concept of vector, matrix, and tensor analysis. These topics are followed by discussions on several theories of series relevant to physics; the fundamentals of complex variables and analytic functions; variational calculus for presenting the basic laws of many branches of physics; and the applications of group representations. The final chapters explore some partial and integral equations and derivatives of physics, as well as the concept and application of probability theory. Physics teachers and students will greatly appreciate this book.
Non-analogue Monte Carlo methods are useful when the direct simulation techniques are insufficient. To use the additional discretization, Monte Carlo estimates are biased and it is desirable to optimize the connection between discretization parameters and the sample size. In this connection, the book investigates variances of non-analogue Monte Carlo estimates, uniform minimization of variances by choosing a computational model and the minimization of computational cost of non-analogue Monte Carlo methods.This book is essentially new with respect to previous monographs on the Monte Carlo methods.
Mathematics of Computing -- Numerical Analysis.
This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.