Download Free An Algebraic Perspective On Homogeneous Cone Programming And The Primal Dual Second Order Cone Approximations Algorithm For Symmetric Cone Programming Book in PDF and EPUB Free Download. You can read online An Algebraic Perspective On Homogeneous Cone Programming And The Primal Dual Second Order Cone Approximations Algorithm For Symmetric Cone Programming and write the review.

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.