Download Free Ambipolar Materials And Devices Book in PDF and EPUB Free Download. You can read online Ambipolar Materials And Devices and write the review.

This book highlights recent development of ambipolar materials involving materials design, fundamental principles, interface modifications, device structures, characteristics and promising applications.
This handbook offers a comprehensive description of the science, technology, economic and human interface factors associated with the displays industry. With expert contributions from over 150 international display professionals and academic researchers, it covers all classes of display device and discusses established principles, emergent technologies, and particular areas of application.
Providing a full overview of organic/polymeric memory nanoscale materials, which are a potential substitute for conventional semiconductor memory systems.
Think like an electron Organic electronic materials have many applications and potential in low-cost electronics such as electronic barcodes and in light emitting devices, due to their easily tailored properties. While the chemical aspects and characterization have been widely studied, characterization of the electrical properties has been neglected, and classic textbook modeling has been applied. This is most striking in the analysis of thin-film transistors (TFTs) using thick “bulk” transistor (MOS-FET) descriptions. At first glance the TFTs appear to behave as regular MOS-FETs. However, upon closer examination it is clear that TFTs are unique and merit their own model. Understanding and interpreting measurements of organic devices, which are often seen as black-box measurements, is critical to developing better devices and this, therefore, has to be done with care. Electrical Characterization of Organic Electronic Materials and Devices Gives new insights into the electronic properties and measurement techniques for low-mobility electronic devices Characterizes the thin-film transistor using its own model Links the phenomena seen in different device structures and different measurement techniques Presents clearly both how to perform electrical measurements of organic and low-mobility materials and how to extract important information from these measurements Provides a much-needed theoretical foundation for organic electronics
This book presents the select proceedings of the International Conference on Advanced Functional Materials and Devices (AFMD 2021). It highlights the advancements in area of functional materials which includes electronic, magnetic, optical, adaptive and dielectric materials that are required to develop new functionalities with better performance in this new era of technology. The topics covered include materials for energy harvesting, biomedical applications, environmental monitoring, photonics and optoelectronic devices, strategic applications and high energy physics. This book will be a useful reference for beginners, researchers, academicians and professionals working in the area of material science and its allied fields.
Smart materials stimulated by chemical or by logical signals hold promise for many applications, including new sensors and actuators for medicine, environmental and process control. In contrast to other books on responsive materials which are restricted to sensing, this volume not only highlights fundamental chemical and physical principles but also focuses on the use of smart materials for applications such as drug delivery, wound healing, cell adhesion, tuneable vesicles, surface control, smart paints and glasses, separations, oil recovery and artificial muscles. In this completely updated and expanded edition, readers are introduced to the area with chapters reflecting the enormous expansion of the field in recent years. Different responsive material systems will be covered including hydrogels, membranes, thin layers, polymer brushes, chemomechanical and imprinted polymers, nanomaterials and silica particles. With contributions from internationally recognised experts, the book will appeal to graduate students and researchers in academia, healthcare and industry interested in functional materials and their applications.
Introduction to Thin Film Transistors reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes.
Ziel dieser Arbeit war die Herstellung und Charakterisierung eines lichtemittierenden ambipolaren organischen Feldeffekttransistors (OFET). In der Literatur wurden lichtemittierende ambipolare Feldeffekttransistoren auf der Basis organischer Moleküle, die von Interesse für neue elektro-optische Bauelemente sind, bisher noch nicht beschrieben. Für die Realisierung eines lichtemittierenden ambipolaren OFETs wurden drei verschiedenene Strategien verfolgt: Zum einen wurden konventionelle Einschichtstrukturen aufihre Elektrolumineszenzeigenschaften hin untersucht. Desweiteren wurden Zweischichtstrukturen auf der Basis eines Elektronen- und eines Löchertransportmaterials hergestellt. Schließlich wurde ein völlig neues Konzept basierend auf koverdampften, d.h. gemischten Filmen bestehend aus Löcher- und Elektronentransportmaterial, realisiert. Die Einschichtstrukturen für sich waren zwar emittierend, doch ist aufgrund der unipolaren Transporteigenschaften der organischen Materialien die Lichtemission auf einen Bereich an einem Kontakt beschränkt. Im Gegensatz dazu wurde an den Zweischichtstrukturen eine ambipolare Transportcharakteristik gemessen, jedoch keine Elektrolumineszenz beobachtet. Schließlich konnte über das neue Konzept der koverdampften Bulk-Heterostruktur erstmals Elektrolumineszenz in einem ambipolaren OFET beobachtet werden. The goal of this thesis was the fabrication and characterization of a light-emitting am- bipolar organic field-effect transistor (OFET). In the literature, light-emitting ambipolar field-effect transistors (FET) based on small molecules, which are of interest for novel electro-optical devices, have not yet been described. For the realization of such a light- emitting ambipolar OFET, three different strategies were pursued: Firstly, conventional single-layer OFETs were investigated in terms of their electroluminescent properties. Secondly, bilayer heterostructures based on an electron- and a hole-transport material were prepared. Thirdly, a novel concept based on coevaporated, i.e. mixed films consisting of an electron- and a hole-transport material, has been realized. Although the single-layer structures were light-emitting, the unipolar transport properties of the organic materials restrict light emission to a region close to one contact. In contrast, in bilayer heterostructures an ambipolar transport characteristics was measured, but no electroluminescence (EL) observed. Finally, with the novel concept of a coevaporated bulk heterostructure, EL in an ambipolar OFET could be observed for the first time.
This book comprehensively describes organic electronic devices developed in the past decades. It not only covers the mainstream devices including organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic thin-film transistors (OTFTs) but also includes devices of recent interest such as organic immune transistors, organic photocatalysis devices, and themoelectrical devices. The book starts from the introduction of basic theory of organic semiconductor materials and devices, which acquaints the readers with the concepts of each type of device described in the following chapters. It also discusses the working principles, device layout, and fabrication process of these devices. The book is intended for undergraduate and postgraduate students who are interested in organic electronics, researchers/engineers working in the field of organic electronic devices/systems.
Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.