Download Free Alternative Routes To Oil Structuring Book in PDF and EPUB Free Download. You can read online Alternative Routes To Oil Structuring and write the review.

This Springer Brief gives an overview of recent research conducted in the area of oil structuring starting with a detailed introduction on oleogelation and properties of food-approved building blocks followed by the discussion of some illustrative examples to explain the processing steps required for creating oleogels, advanced characterization (rheological, thermal and microstructural) and some potential edible applications of oleogels. The book w concludes with a section summarizing the general guidelines on the properties of oleogels and practically of approach with regards to the specific category of building blocks used for structuring. The text also lists some unresolved challenges that need to be addressed in order to fully exploit oleogelation for future food product development. The functional application of liquid oils in food product development is mostly accomplished by structuring them into soft, plastic-like materials. This structuring of oil is traditionally based on the fat crystal network formed by high melting triacylglycerol (TAG) molecules that are rich in trans and/or saturated fatty acids. Currently, due to the factors such as the requirement for trans- and saturated fat-free food products, sustainable manufacturing and ethical trade practices, the research in the area of identifying alternative routes to oil structuring (in the absence of trans and saturated fats) has been regarded as a 'hot topic' in the bio-scientific community. Oleogelation (gelling of liquid oil in absence of crystallizable TAGs) is one such alternative, which has recently attracted tremendous attention from researchers and industrial scientists working in the domain of food product development. The possibility of creating structured gels that contain a large amount of liquid oil (usually above 90 wt%) opens up many possibilities to develop food products with better nutritional profiles.
This Springer Brief gives an overview of recent research conducted in the area of oil structuring starting with a detailed introduction on oleogelation and properties of food-approved building blocks followed by the discussion of some illustrative examples to explain the processing steps required for creating oleogels, advanced characterization (rheological, thermal and microstructural) and some potential edible applications of oleogels. The book w concludes with a section summarizing the general guidelines on the properties of oleogels and practically of approach with regards to the specific category of building blocks used for structuring. The text also lists some unresolved challenges that need to be addressed in order to fully exploit oleogelation for future food product development. The functional application of liquid oils in food product development is mostly accomplished by structuring them into soft, plastic-like materials. This structuring of oil is traditionally based on the fat crystal network formed by high melting triacylglycerol (TAG) molecules that are rich in trans and/or saturated fatty acids. Currently, due to the factors such as the requirement for trans- and saturated fat-free food products, sustainable manufacturing and ethical trade practices, the research in the area of identifying alternative routes to oil structuring (in the absence of trans and saturated fats) has been regarded as a ‘hot topic’ in the bio-scientific community. Oleogelation (gelling of liquid oil in absence of crystallizable TAGs) is one such alternative, which has recently attracted tremendous attention from researchers and industrial scientists working in the domain of food product development. The possibility of creating structured gels that contain a large amount of liquid oil (usually above 90 wt%) opens up many possibilities to develop food products with better nutritional profiles.
The physical properties associated with the saturated and trans fats obtained through partial hydrogenation of vegetable oils (PHVOs) provide the solid fat content, melting and textural properties that consumers require in food products like butter, margarines, vegetable creams, spreads, and confectionary fats. However, saturated and trans fats increase low density lipoprotein, while trans fats also lower high-density lipoprotein serum levels. These indicators increase the risk of developing cardiovascular disease, type II diabetes, stroke, and have recently been associated with metabolic syndrome. Consequently, regulatory agencies worldwide have passed legislation restricting the addition of PHVOs and their derivatives (i.e., shortenings) to food products. This has lead research groups worldwide to investigate different mechanisms to provide structural and physical properties to edible, healthy unsaturated oils. The overall objective is to achieve similar functional properties to those provided by PHVOs and shortenings to food products. This book encompasses the work of leading researchers discussing, from a scientific and technological perspective, the latest and most innovative approaches to structure edible oils without the use of trans fats. Additionally, the authors discuss practical uses and technical limitations associated with the use of "structured edible oils" in different food systems. Appealing to researchers and professionals working in lipid science, food chemistry and fat metabolism, it fills the gap in the literature for a book in this fast-changing field.
The proper nutrition can aid disease prevention and ensure an overall healthy lifestyle. In nutrition, certain natural and processed foods are particularly useful in achieving and maintaining health goals. Nutraceuticals and Innovative Food Products for Healthy Living and Preventive Care is a comprehensive reference source for the latest research findings on food components that provide health and medical benefits, including the prevention, treatment, and cures for numerous diseases. Featuring extensive coverage on relevant areas such as functional foods, alternative medicine, and nutrition, this publication is an ideal resource for medical practitioners, nutritionists, upper-level students, researchers, and academicians seeking information on the use of food products in health management.
The most useful properties of food, i.e. the ones that are detected through look, touch and taste, are a manifestation of the food’s structure. Studies about how this structure develops or can be manipulated during food production and processing are a vital part of research in food science. This book provides the status of research on food structure and how it develops through the interplay between processing routes and formulation elements. It covers food structure development across a range of food settings and consider how this alters in order to design food with specific functionalities and performance. Food structure has to be considered across a range of length scales and the book includes a section focusing on analytical and theoretical approaches that can be taken to analyse/characterise food structure from the nano- to the macro-scale. The book concludes by outlining the main challenges arising within the field and the opportunities that these create in terms of establishing or growing future research activities. Edited and written by world class contributors, this book brings the literature up-to-date by detailing how the technology and applications have moved on over the past 10 years. It serves as a reference for researchers in food science and chemistry, food processing and food texture and structure.
FAT MIMETICS FOR FOOD APPLICATIONS Detailed resource providing insight into the understanding of fat mimetics and their use for the development of food products Fat Mimetics for Food Applications explores strategies for the development of fat mimetics for food applications, including meat, dairy, spreads and baked products, covering all the physical strategies and presenting the main characterization techniques for the study of fat mimetics behaviour. The text further provides insight into the understanding of fat mimetics in food structure and how it affects food products. Fat Mimetics for Food Applications is organized into five sections. The first section provides a historical overview and thermodynamic perspective of the structure-properties relationship in fat mimetics. Section II is devoted to the main materials used for the development of fat mimetics, and the structures that result from different methodologies and approaches. Section III overviews the methodologies used for the characterization of the developed replacers. Section IV contains examples of what has been done in the use of fat mimetics in food. Section V focuses on a future perspective, along with real cases of projects within the industry and a commercial perspective of some examples. Topics covered in Fat Mimetics for Food Applications include: Role of lipids in foods and human nutrition; the current status of fats in the food industry; and food trends as they pertain to fat mimetics Materials for the production of fat mimetics such as natural waxes, sterols, lecithin, mono and di-glycerides, fatty alcohols and fatty acids, polysaccharides and proteins Rheological and texture properties; sensorial aspects of fat mimetics and advanced characterization strategies such as small-angle X-ray scattering and small-angle neutron scattering Fat mimetics’ nutritional and functional properties, along with examples of using in vitro gastrointestinal digestion system to unravel the lipids fat during digestion Examples of the application of fat mimetics in different food products such as meat, dairy, margarine and fat spreads and baked products Fat Mimetics for Food Applications targets researchers, academics, and food industry professionals to boost their capability to integrate different science and technology as well as engineering and materials aspects of fat mimetics for food development.
This new volume presents a selection of recent advances and emerging trends in food process engineering from several disciplines. Exploring the key concepts of food engineering, Food Engineering: Emerging Issues, Modeling, and Applications presents the information in four parts: Modeling in food engineering; Research advances in food engineering; Role of food engineering in human health; Emerging issues and applications in food engineering.
An authoritative reference that contains the most up-to-date information knowledge, approaches, and applications of lipid crystals Crystallization of Lipids is a comprehensive resource that offers the most current and emerging knowledge, techniques and applications of lipid crystals. With contributions from noted experts in the field, the text covers the basic research of polymorphic structures, molecular interactions, nucleation and crystal growth and crystal network formation of lipid crystals which comprise main functional materials employed in food, cosmetic and pharmaceutical industry. The authors highlight trans-fat alternative and saturated-fat reduction technology to lipid crystallization. These two issues are the most significant challenges in the edible-application technology of lipids, and a key solution is lipid crystallization. The text focuses on the crystallization processes of lipids under various external influences of thermal fluctuation, ultrasound irradiation, shear, emulsification and additives. Designed to be practical, the book’s information can be applied to realistic applications of lipids to foods, cosmetic and pharmaceuticals. This authoritative and up-to-date guide: Highlights cutting-edge research tools designed to help analyse lipid crystallization with the most current and the conventional techniques Offers a thorough review of the information, techniques and applications of lipid crystals Includes contributions from noted experts in the field of lipid crystals Presents cutting-edge information on the topics of trans-fat alterative and saturated-fat reduction technology Written for research and development technologists as well as academics, this important resource contains research on lipid crystals which comprise the main functional materials employed in food, cosmetic and pharmaceutical industry.
This work highlights a new research area driven by a material science approach to dairy fats and dairy fat-rich products where innovative dairy products and ingredients can be tailor-made. Cutting edge topics such as tribology of dairy fats and dairy products, manipulation of differentiated-sized milk fat globules, milk fat interesterification for infant formula, structuring of lipids in dairy products and production of human milk fat substitutes by including dairy fats are featured in dedicated chapters authored by international scientific experts from across the globe. The text also presents in-depth research on proteomic characterization, digestion and the nutritional functionality of milk fat globule membrane. The biosynthesis, chemistry, digestion and nutritional roles of milk lipids, physics of dairy fats, structure and functionality of the milk fat globule membrane, analytical methods, materials science, technology and manufacturing of dairy fat-rich products such as butter, dairy fat spreads, dairy creams, cream powders and ghee are also covered in-depth. Dairy Fat Products and Functionality: Fundamental Science and Technology is a useful reference text for technologists and scientists interested in advancing their fundamental knowledge of dairy fat and dairy products as well as using a materials science and technology approach to guide efforts or widen research opportunities in optimizing the functionality of these products. From their physics and chemistry to their nutritional values and methodologies, this comprehensive and innovative text covers all the necessary information needed to understand the new methods and technologies driving the modern production of milk fat products.