Download Free Alternative Energy Sources Part A Book in PDF and EPUB Free Download. You can read online Alternative Energy Sources Part A and write the review.

Alternative Energy Sources Part A
Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near future (20-50 years). The two first chapters on "energy demand and supply" and "environmental effects," set the tone as to why alternative energy is essential for the future. The third chapter gives the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The section on exergy gives a quantitative background on the capability/potential of each energy source to produce power. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy, the power plants that may produce power from these sources and the issues that will frame the public debate on nuclear energy. The following five chapters include descriptions of the most common renewable energy sources (wind, solar, geothermal, biomass, hydroelectric) some of the less common sources (e.g. tidal and wave energy). The emphasis of these chapters will be on the global potential of each source, the engineering/technical systems that are used in harnessing the potential of each source, the technological developments that will contribute to wider utilization of the sources and environmental effects associated with their wider use. The last three chapters are: "energy storage," which will become an important issue if renewable energy sources are used widely. The fourteen chapters in the book have been chosen so that one may fit a semester University course around this book. At the end of every chapter, there are 10-20 problems and 1-3 suggestions of semester projects that may be assigned to students for further research.
Renewable Energy Has a Good Side and a Bad Side Evaluate BothAll energy sources affect the environment in which we live. While fossil fuels may essentially do more harm, renewable energy sources can also pose a threat to the environment. Allowing for the various renewable energy sources: solar, wind, hydro, biomass, and geothermal, Environmental I
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
Energy Global energy demand has more than doubled since 1970. The use of energy is strongly related to almost every conceivable aspect of development: wealth, health, nutrition, water, infrastructure, education and even life expectancy itself are strongly and significantly related to the consumption of energy per capita. Many development indicators are strongly related to per-capita energy consumption. Fossil fuel is the most conventional source of energy but also increases greenhouse gas emissions. The economic development of many countries has come at the cost of the environment. However, it should not be presumed that a reconciliation of the two is not possible. The nexus concept is the interconnection between the resource energy, water, food, land, and climate. Such interconnections enable us to address trade-offs and seek synergies among them. Energy, water, food, land, and climate are essential resources of our natural environment and support our quality of life. Competition between these resources is increasing globally and is exacerbated by climate change. Improving resilience and securing resource availability would require improving resource efficiency. Many policies and programs are announced nationally and internationally for replacing the conventional mode and also emphasizing on conservation of fossil fuels and reuse of exhausted energy, so a gap in implications and outcomes can be broadly traced by comparing the data. This book aims to highlight problems and solutions related to conventional energy utilization, formation, and multitudes of ecological impacts and tools for the conservation of fossil fuels. The book also discusses modern energy services as one of the sustainable development goals and how the pressure on resource energy disturbs the natural flows. The recent advances in alternative energy sources and their possible future growth are discussed and on how conventional energy leads to greenhouse gas formation, which reduces energy use efficiency. The different policies and models operating is also addressed, and the gaps that remained between them. Climate change poses a challenge for renewable energy, and thus it is essential to identify the factors that would reduce the possibility of relying on sustainable energy sources. This book will be of interest to researchers and stakeholders, students, industries, NGOs, and governmental agencies directly or indirectly associated with energy research.
Fundamentals of Renewable Energy Processes contains the technical detail necessary to understand the engineering principles that govern renewable energy application at many different levels. Focused on the fundamental mechanisms and processes that underpin energy management, it provides students with the foundation for all energy process courses. This text is organized according to the main forms of energy – heat engines, hydrogen energy, energy from the sun, and wind and water energy - with an introductory chapter of basic energy terms. From fuel cells, electrolyzers, and processes for hydrogen production to biomass and windmills the author provides the most thorough examination of all aspects of renewable energy processes. The book is recommended for all students and professionals studying the basic mechanisms of renewable energies. * Examines the fundamentals of some non-traditional energy processes and illustrates the best way to implement these processes in our modern world.* Appropriate for all students and professionals studying the basic mechanisms of renewable energies.* Clear theory and physical examples of all principles relevant to the study of renewable energy. * Written by an internationally recognized pioneer researcher
This volume provides an insightful overview of renewable and alternative energy technologies and policies in the United States and around the world. Are renewable and alternative energy solutions needed to combat many of the negative effects of fossil fuel (including global warming)? Can such solutions be "clean," and still economically viable? For readers wanting clear, objective answers to questions like these, this fascinating, highly informative volume is the ideal source. Renewable and Alternative Energy Resources: A Reference Handbook provides an authoritative, unbiased overview of existing and potential renewable and alternative energy technologies, covering the benefits and drawbacks associated with each. It then looks at a number of specific questions and controversies on this issue, examining the social, political, and economic aspects of renewable and alternative energy use in the United States and other countries—detailing different approaches and activities of international organizations, national governments, and private sector initiatives.
This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.
This book is a reality check of where energy will come from in the future. Today, our economy is utterly dependent on fossil fuels. They are essential to transportation, manufacturing, farming, electricity, and to make fertilizers, cement, steel, roads, cars, and half a million other products. One day, sooner or later, fossil fuels will no longer be abundant and affordable. Inevitably, one day, global oil production will decline. That time may be nearer than we realize. Some experts predict oil shortages as soon as 2022 to 2030. What then are our options for replacing the fossil fuels that turn the great wheel of civilization? Surveying the arsenal of alternatives – wind, solar, hydrogen, geothermal, nuclear, batteries, catenary systems, fusion, methane hydrates, power2gas, wave, tidal power and biomass – this book examines whether they can replace or supplement fossil fuels. The book also looks at substitute energy sources from the standpoint of the energy users. Manufacturing, which uses half of fossil fuels, often requires very high heat, which in many cases electricity can't provide. Industry uses fossil fuels as a feedstock for countless products, and must find substitutes. And, as detailed in the author's previous book, "When Trucks Stop Running: Energy and the Future of Transportation," ships, locomotives, and heavy-duty trucks are fueled by diesel. What can replace diesel? Taking off the rose-colored glasses, author Alice Friedemann analyzes our options. What alternatives should we deploy right now? Which technologies merit further research and development? Which are mere wishful thinking that, upon careful scrutiny, dematerialize before our eyes? Fossil fuels have allowed billions of us to live like kings. Fueled by oil, coal, and natural gas, we changed the equation constraining the carrying capacity of our planet. As fossil fuels peak and then decline, will we fall back to Earth? Are there viable alternatives?
This book provides a platform for scientists and engineers to comprehend the technologies of solar wind hybrid renewable energy systems and their applications. It describes the thermodynamic analysis of wind energy systems, and advanced monitoring, modeling, simulation, and control of wind turbines. Based on recent hybrid technologies considering wind and solar energy systems, this book also covers modeling, design, and optimization of wind solar energy systems in conjunction with grid-connected distribution energy management systems comprising wind photovoltaic (PV) models. In addition, solar thermochemical fuel generation topology and evaluation of PV wind hybrid energy for a small island are also included in this book. Since energy storage plays a vital role in renewable energy systems, another salient part of this book addresses the methodology for sizing hybrid battery-backed power generation systems in off-grid connected locations. Furthermore, the book proposes solutions for sustainable rural development via passive solar housing schemes, and the impacts of renewable energies in general, considering social, economic, and environmental factors. Because this book proposes solutions based on recent challenges in the area of hybrid renewable technologies, it is hoped that it will serve as a useful reference to readers who would like to be acquainted with new strategies of control and advanced technology regarding wind solar hybrid systems