Download Free Alternative Electric Power Rate Structures Book in PDF and EPUB Free Download. You can read online Alternative Electric Power Rate Structures and write the review.

A "quick look up guide," Electricity Cost Modeling Calculations places the relevant formulae and calculations at the reader's finger tips. In this book, theories are explained in a nutshell and then the calculation is presented and solved in an illustrated, step-by-step fashion. A valuable guide for new engineers, economists (or forecasters), regulators, and policy makers who want to further develop their knowledge of best practice calculations techniques or experienced practitioners (and even managers) who desire to acquire more useful tips, this book offers expert advice for using such cost models to determine optimally-sized distribution systems and optimally-structured power supplying entities. In other words, this book provides an Everything-that-you-want-to-know-about-cost-modelling-for-electric-utilities (but were afraid to ask) approach to modelling the cost of supplying electricity. In addition, the author covers the concept of multiproduct and multistage cost functions, which are appropriate in modelling the cost of supplying electricity. The author has done all the heavy number-crunching, and provides the reader with real-world, practical examples of how to properly quantify the costs associated with providing electric service, thus increasing the accuracy of the results and support for the policy initiatives required to ensure the competitiveness of the power suppliers in this new world in which we are living. The principles contained herein could be employed to assist in the determination of the cost-minimizing amount of output (i.e., electricity), which could then be used to determine whether a merger between two entities makes sense (i.e., would increase profitability). Other examples abound: public regulatory commissions also need help in determining whether mergers (or divestitures) are welfare-enhancing or not; ratemaking policies depend on costs and properly determining the costs of supplying electric (or gas, water, and local telephone) service. Policy makers, too, can benefit in terms of optimal market structure; after all, the premise of deregulation of the electric industry was predicated on the idea that generation could be deregulated. Unfortunately, the economies of vertical integration between the generation. - A comprehensive guide to the cost issues surrounding the generation, transmission, and distribution of electricity - Real-world examples that are practical, meaningful, and easy to understand - Policy implications and suggestions to aid in the formation of the optimal market structure going forward (thus increasing efficiency of electric power suppliers) - The principles contained herein could be employed to assist in the determination of the cost-minimizing amount of output
- This derivative volume stemming from content included in our seminal Power Electronics Handbook takes its chapters related to renewables and establishes them at the core of a new volume dedicated to the increasingly pivotal and as yet under-published intersection of Power Electronics and Alternative Energy. While this re-versioning provides a corollary revenue stream to better leverage our core handbook asset, it does more than simply re-package existing content. Each chapter will be significantly updated and expanded by more than 50%, and all new introductory and summary chapters will be added to contextualize and tie the volume together. Therefore, unlike traditional derivative volumes, we will be able to offer new and updated material to the market and include this largely original content in our ScienceDirect Energy collection. - Due to the inherently multi-disciplinary nature of renewables, many engineers come from backgrounds in Physics, Materials, or Chemical Engineering, and therefore do not have experience working in-depth with electronics. As more and more alternative and distributed energy systems require grid hook-ups and on-site storage, a working knowledge of batteries, inverters and other power electronics components becomes requisite. Further, as renewables enjoy broadening commercial implementation, power electronics professionals are interested to learn of the challenges and strategies particular to applications in alternative energy. This book will bring each group up-to-speed with the primary issues of importance at this technological node. - This content clarifies the juncture of two key coverage areas for our Energy portfolio: alternative sources and power systems. It serves to bridge the information in our power engineering and renewable energy lists, supporting the growing grid cluster in the former and adding key information on practical implementation to the latter. - Provides a thorough overview of the key technologies, methods and challenges for implementing power electronics in alternative energy systems for optimal power generation - Includes hard-to-find information on how to apply converters, inverters, batteries, controllers and more for stand-alone and grid-connected systems - Covers wind and solar applications, as well as ocean and geothermal energy, hybrid systems and fuel cells
This is a comprehensive textbook for the new trend of distributed power generation systems and renewable energy sources in electric power systems. It covers the complete range of topics from fundamental concepts to major technologies as well as advanced topics for power consumers. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department -- to obtain the manual, send an email to [email protected]
A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies provides guidance on economic evaluation approaches, metrics, and levels of detail required, while offering a consistent basis on which analysts can perform analyses using standard assumptions and bases. It not only provides information on the primary economic measures used in economic analyses and the fundamentals of finance but also provides guidance focused on the special considerations required in the economic evaluation of energy efficiency and renewable energy systems.
This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.