Download Free Alkene Polymerization Reactions With Transition Metal Catalysts Book in PDF and EPUB Free Download. You can read online Alkene Polymerization Reactions With Transition Metal Catalysts and write the review.

During the past 30 years, the field of alkene polymerization over transition metal catalysts underwent several major changes:1. The list of commercial heterogeneous Ziegler-Natta catalysts for the synthesis of polyethylene and stereoregular polyolefins was completely renewed affording an unprecedented degree of control over the polymer structure.2. Research devoted to metallocene and other soluble transition-metal catalysis has vastly expanded and has shifted toward complexes of transition metals with multidentate ligands.3. Recent developments in gel permeation chromatography, temperature-rising fractionation, and crystallization fractionation provided the first reliable information about differences between various active centers in transition-metal catalysts.4. A rapid development of high-resolution 13C NMR spectroscopy resulted in greatly expanded understanding of the chemical and steric features of polyolefins and alkene copolymers. These developments require a new review of all aspects of alkene polymerization reactions with transition-metal catalysts. The first chapter in the book is an introductory text for researchers who are entering the field. It describes the basic principles of polymerization reactions with transition-metal catalysts, the types of catalysts, and commercially manufactured polyolefins. The next chapter addresses the principal issue of alkene polymerization catalysis: the existence of catalyst systems with single and multiple types of active centers. The subsequent chapters are devoted to chemistry and stereochemistry of elemental reaction steps, structures of catalyst precursors and reactions leading to the formation of active centers, kinetics of polymerization reactions, and their mechanisms.The book describes the latest commercial polymerization catalysts for the synthesis of polyethylenes and polypropylene The book provides a detailed description of the multi-center nature of commercial Ziegler-Natta catalysts. The book devotes specialized chapters to the most important aspects of transition metal polymerization catalysts: the reactions leading to the formation of active centers, the chemistry and stereochemistry of elemental polymerization steps, reaction kinetics, and the polymerization mechanism. The book contains an introductory chapter for researchers who are entering the field of polymerization catalysis. It describes the basic principles of polymerization reactions with transition-metal catalysts and the types of commercially manufactured polyolefins and copolymersThe book contains over 2000 references, the most recent up to end of 2006.
During the past 30 years, the field of alkene polymerization over transition metal catalysts underwent several major changes: 1. The list of commercial heterogeneous Ziegler-Natta catalysts for the synthesis of polyethylene and stereoregular polyolefins was completely renewed affording an unprecedented degree of control over the polymer structure. 2. Research devoted to metallocene and other soluble transition-metal catalysis has vastly expanded and has shifted toward complexes of transition metals with multidentate ligands. 3. Recent developments in gel permeation chromatography, temperature-rising fractionation, and crystallization fractionation provided the first reliable information about differences between various active centers in transition-metal catalysts. 4. A rapid development of high-resolution 13C NMR spectroscopy resulted in greatly expanded understanding of the chemical and steric features of polyolefins and alkene copolymers. These developments require a new review of all aspects of alkene polymerization reactions with transition-metal catalysts. The first chapter in the book is an introductory text for researchers who are entering the field. It describes the basic principles of polymerization reactions with transition-metal catalysts, the types of catalysts, and commercially manufactured polyolefins. The next chapter addresses the principal issue of alkene polymerization catalysis: the existence of catalyst systems with single and multiple types of active centers. The subsequent chapters are devoted to chemistry and stereochemistry of elemental reaction steps, structures of catalyst precursors and reactions leading to the formation of active centers, kinetics of polymerization reactions, and their mechanisms. The book describes the latest commercial polymerization catalysts for the synthesis of polyethylenes and polypropylene The book provides a detailed description of the multi-center nature of commercial Ziegler-Natta catalysts. The book devotes specialized chapters to the most important aspects of transition metal polymerization catalysts: the reactions leading to the formation of active centers, the chemistry and stereochemistry of elemental polymerization steps, reaction kinetics, and the polymerization mechanism. The book contains an introductory chapter for researchers who are entering the field of polymerization catalysis. It describes the basic principles of polymerization reactions with transition-metal catalysts and the types of commercially manufactured polyolefins and copolymers The book contains over 2000 references, the most recent up to end of 2006.
Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization
With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.
This introductory text is an important resource for new engineers, chemists, students, and chemical industry personnel to understand the technical aspects of polypropylene which is the 2nd largest synthetics polymer in manufactured output. The book considers the following topics: What are the principal types of polypropylene and how do they differ? What catalysts are used to produce polypropylene and how do they function? What is the role of cocatalysts and how have they evolved over the years? How are industrial polypropylene catalysts tested and the resultant polymer evaluated? What processes are used in the manufacture of polypropylene? What are the biopolymer alternatives to polypropylene? What companies are the major industrial manufacturers of polypropylene? What is the environmental fate of polypropylene?
Boasting numerous industrial applications, inorganic chemistry forms the basis for research into new materials and bioinorganic compounds such as calcium that act as biological catalysts. Now complete, this highly acclaimed series presents current knowledge in all areas of inorganic chemistry, including chemistry of the elements; organometallic, polymeric and solid-state materials; and compounds relevant to bioinorganic chemistry.
This handbook provides an exhaustive description of polyethylene. The 50+ chapters are written by some of the most experienced and prominent authors in the field, providing a truly unique view of polyethylene. The book starts with a historical discussion on how low density polyethylene was discovered and how it provided unique opportunities in the early days. New catalysts are presented and show how they created an expansion in available products including linear low density polyethylene, high density polyethylene, copolymers, and polyethylene produced from metallocene catalysts. With these different catalysts systems a wide range of structures are possible with an equally wide range of physical properties. Numerous types of additives are presented that include additives for the protection of the resin from the environment and processing, fillers, processing aids, anti-fogging agents, pigments, and flame retardants. Common processing methods including extrusion, blown film, cast film, injection molding, and thermoforming are presented along with some of the more specialized processing techniques such as rotational molding, fiber processing, pipe extrusion, reactive extrusion, wire and cable, and foaming processes. The business of polyethylene including markets, world capacity, and future prospects are detailed. This handbook provides the most current and complete technology assessments and business practices for polyethylene resins.
Homogeneous Catalysis by Metal Complexes, Volume II: Activation of Alkenes and Alkynes reviews and systematizes the chemistry of metal ion activation of alkenes and alkynes. The book presents the migration of ? bonds; the oxo reaction; and the hydrosilation of alkenes and alkynes. The text also covers topics on the oxidation of alkenes and alkynes, as well as the multiple insertion reactions of alkenes and alkynes.
Hydrocarbons and their transformations play major roles in chemistry as raw materials and sources of energy. Diminishing petroleum supplies, regulatory problems, and environmental concerns constantly challenge chemists to rethink and redesign the industrial applications of hydrocarbons. Written by Nobel Prize-winner George Olah and hydrocarbon expert Árpád Molnár, the completely revised and expanded Second Edition of Hydrocarbon Chemistry provides an unparalleled contemporary assessment of the field, presenting basic concepts, current research, and future applications. Hydrocarbon Chemistry begins by discussing the general aspects of hydrocarbons, the separation of hydrocarbons from natural sources, and the synthesis from C1 precursors with recent developments for possible future applications. Each successive chapter deals with a specific type of hydrocarbon transformation. The Second Edition includes a new section on the chemical reduction of carbon dioxide–focusing on catalytic, ionic, electrocatalytic, photocatalytic, and ezymatic reductions–as well as a new chapter on new catalysts and activation methods, combinatorial chemistry, and environmental chemistry. Other topics covered include: Major processes of the petrochemical industry, such as cracking, reforming, isomerization, and alkylation Derivation reactions to form carbon-heteroatom bonds Hydrocarbon oxidations Metathesis Oligomerization and polymerization of hydrocarbons All chapters have been updated by adding sections on recent developments to review new advances and results. Essential reading for practicing scientists in industry, polymer and catalytic chemists, as well as researchers and graduate students, Hydrocarbon Chemistry, Second Edition remains the benchmark text in its field.
Im Laufe der vergangenen 35 Jahre wurden unzahlige Synthesewege entwickelt, bei denen Ubergangsmetallkomplexe entweder als Reagenzien oder als Katalysatoren fungieren. Dieses Buch bietet besonders denjenigen Synthesechemikern interessante und moderne Einblicke, die bisher noch nicht mit den vielfaltigen Moglichkeiten der Organometallchemie mit Ubergangsmetallen vertraut sind. Zu wichtigen ubergangsmetallkatalysierten Reaktionen werden Anwendungsbeispiele diskutiert. (01/00)