Download Free Algorithms And Concepts For Robust Optimization Book in PDF and EPUB Free Download. You can read online Algorithms And Concepts For Robust Optimization and write the review.

Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems.
Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of robust data mining research field and presents the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This brief will appeal to theoreticians and data miners working in this field.
Algorithm Engineering is a methodology for algorithmic research that combines theory with implementation and experimentation in order to obtain better algorithms with high practical impact. Traditionally, the study of algorithms was dominated by mathematical (worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and experiments conducted in a systematic way, sometimes resembling the experimentation processes known from fields such as biology, chemistry, or physics. This helps in counteracting an otherwise growing gap between theory and practice.
A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
Algorithms are essential building blocks of computer applications. However, advancements in computer hardware, which render traditional computer models more and more unrealistic, and an ever increasing demand for efficient solution to actual real world problems have led to a rising gap between classical algorithm theory and algorithmics in practice. The emerging discipline of Algorithm Engineering aims at bridging this gap. Driven by concrete applications, Algorithm Engineering complements theory by the benefits of experimentation and puts equal emphasis on all aspects arising during a cyclic solution process ranging from realistic modeling, design, analysis, robust and efficient implementations to careful experiments. This tutorial - outcome of a GI-Dagstuhl Seminar held in Dagstuhl Castle in September 2006 - covers the essential aspects of this process in ten chapters on basic ideas, modeling and design issues, analysis of algorithms, realistic computer models, implementation aspects and algorithmic software libraries, selected case studies, as well as challenges in Algorithm Engineering. Both researchers and practitioners in the field will find it useful as a state-of-the-art survey.
This book constitutes the refereed proceedings of the First International ICST Conference on Theory and Practice of Algorithms in (Computer) Systems, TAPAS 2011, held in Rome, Italy, in April 2011. The 25 papers presented, including three short papers by invited speakers, were carefully reviewed and selected from 45 submissions. The papers all feature original research in the design, implementation and evaluation of algorithms with special focus on algorithms for combinatorial optimization problems, and to real-world applications, engineering and experimental analysis of algorithms - thus fostering the cooperation among researchers in computer science, networking, discrete mathematics, mathematical programming and operations research.
This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
This book constitutes the refereed proceedings of the 19th Annual European Symposium on Algorithms, ESA 2011, held in Saarbrücken, Germany, in September 2011 in the context of the combined conference ALGO 2011. The 67 revised full papers presented were carefully reviewed and selected from 255 initial submissions: 55 out of 209 in track design and analysis and 12 out of 46 in track engineering and applications. The papers are organized in topical sections on approximation algorithms, computational geometry, game theory, graph algorithms, stable matchings and auctions, optimization, online algorithms, exponential-time algorithms, parameterized algorithms, scheduling, data structures, graphs and games, distributed computing and networking, strings and sorting, as well as local search and set systems.
Scheduled transportation networks give rise to very complex and large-scale networkoptimization problems requiring innovative solution techniques and ideas from mathematical optimization and theoretical computer science. Examples of scheduled transportation include bus, ferry, airline, and railway networks, with the latter being a prime application domain that provides a fair amount of the most complex and largest instances of such optimization problems. Scheduled transport optimization deals with planning and scheduling problems over several time horizons, and substantial progress has been made for strategic planning and scheduling problems in all transportation domains. This state-of-the-art survey presents the outcome of an open call for contributions asking for either research papers or state-of-the-art survey articles. We received 24 submissions that underwent two rounds of the standard peer-review process, out of which 18 were finally accepted for publication. The volume is organized in four parts: Robustness and Recoverability, Robust Timetabling and Route Planning, Robust Planning Under Scarce Resources, and Online Planning: Delay and Disruption Management.