Download Free Algebraic Structures On Mod Planes Book in PDF and EPUB Free Download. You can read online Algebraic Structures On Mod Planes and write the review.

Study of MOD planes happens to a very recent one. In this book, systematically algebraic structures on MOD planes like, MOD semigroups, MOD groups and MOD rings of different types are defined and studied. Such study is innovative for a large four quadrant planes are made into a small MOD planes. Several distinct features enjoyed by these MOD planes are defined, developed and described.
In this book authors for the first time construct non-associative algebraic structures on the MOD planes. Using MOD planes we can construct infinite number of groupoids for a fixed m and all these MOD groupoids are of infinite cardinality. Special identities satisfied by these MOD groupoids build using the six types of MOD planes are studied. Further, the new concept of special pseudo zero of these groupoids are defined, described and developed. Also conditions for these MOD groupoids to have special elements like idempotent, special pseudo zero divisors and special pseudo nilpotent are obtained. Further non-associative MOD rings are constructed using MOD groupoids and commutative rings with unit. That is the MOD groupoid rings gives infinitely many non-associative ring. These rings are analysed for substructures and special elements. This study is new and innovative and several open problems are suggested.
In this book the authors for the first time construct MOD Relational Maps model analogous to Fuzzy Relational Maps (FRMs) model or Neutrosophic Relational Maps (NRMs) model using the MOD rectangular or relational matrix. The advantage of using these models is that the MOD fixed point pair or MOD limit cycle pair is obtained after a finite number of iterations.
In this book the authors for the first time introduce, study and develop the notion of MOD graphs, MOD directed graphs, MOD finite complex number graphs, MOD neutrosophic graphs, MOD dual number graphs, and MOD directed natural neutrosophic graphs. There are open conjectures that can help researchers in the graph theory.
In this book authors for the first time introduce a special type of fixed points using MOD square matrix operators. These special type of fixed points are different from the usual classical fixed points. These special type of fixed points or special realized limit cycles are always guaranteed as we use only MOD matrices as operators with its entries from modulo integers. However this sort of results are NP hard problems if we use reals or complex numbers.
A new dimension is given to modulo theory by defining MOD planes. In this book, the authors consolidate the entire four quadrant plane into a single quadrant plane defined as the MOD planes. MOD planes can be transformed to infinite plane and vice versa. Several innovative results in this direction are obtained. This paradigm shift will certainly lead to new discoveries.
In this book the authors introduce for the first time the MOD Natural Subset Semigroups. They enjoy very many special properties. They are only semigroups even under addition. This book provides several open problems to the semigroup theorists
The study of MOD Structures is new and innovative. The authors in this book propose several problems on MOD Structures, some of which are at the research level.
In this book authors introduce the new notion of MOD rectangular planes. The functions on them behave very differently when compared to MOD planes (square). These are different from the usual MOD planes. Algebraic structures on these MOD rectangular planes are defined and developed.
In this book, the authors introduce the linguistic set associated with a linguistic variable and the structure of matrices, which they define as linguistic matrices. The authors build linguistic matrices only for those linguistic variables which yield a linguistic continuum or an ordered linguistic set. This book is organised into three chapters. The first chapter is introductory, in which we introduce all the basic concepts of linguistic variables and the associated linguistic set to make this book self-contained. Chapter two introduces linguistic matrices and develops basic properties associated with them, like types of matrices, transpose of matrices and diagonal matrices. Most of the properties enjoyed by real or complex matrices are satisfied by these linguistic matrices. Chapter three deals with operations on the linguistic matrices.