Download Free Algebraic Multilevel Iteration Methods With Applications Book in PDF and EPUB Free Download. You can read online Algebraic Multilevel Iteration Methods With Applications and write the review.

Mathematics of Computing -- General.
This book deals with algorithms for the solution of linear systems of algebraic equations with large-scale sparse matrices, with a focus on problems that are obtained after discretization of partial differential equations using finite element methods. The authors provide a systematic presentation of the recent advances in robust algebraic multilevel methods and algorithms, e.g., the preconditioned conjugate gradient method, algebraic multilevel iteration (AMLI) preconditioners, the classical algebraic multigrid (AMG) method and its recent modifications, namely AMG using element interpolation (AMGe) and AMG based on smoothed aggregation. The first six chapters can serve as a short introductory course on the theory of AMLI methods and algorithms. The next part of the monograph is devoted to more advanced topics, including the description of new generation AMG methods, AMLI methods for discontinuous Galerkin systems, looking-free algorithms for coupled problems etc., ending with important practical issues of implementation and challenging applications. This second part is addressed to some more experienced students and practitioners and can be used to complete a more advanced course on robust AMLI and AMG methods and their efficient application. This book is intended for mathematicians, engineers, natural scientists etc.
This book constitutes the thoroughly refereed post-proceedings of the 6th International Conference on Numerical Methods and Applications, NMA 2006, held in Borovets, Bulgaria, in August 2006. The 84 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 111 submissions. The papers are organized in topical sections on numerical methods for hyperbolic problems, robust preconditioning solution methods, Monte Carlo and quasi-Monte Carlo for diverse applications, metaheuristics for optimization problems, uncertain/control systems and reliable numerics, interpolation and quadrature processes, large-scale computations in environmental modelling, and contributed talks.
Scientific Computing & Applications
Mathematics of Computing -- Numerical Analysis.
Since the first edition of this book was published in 1996, tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of the new generation of linear and nonlinear systems arising in typical applications has grown. Solving the three-dimensional models of these problems using direct solvers is no longer effective. At the same time, parallel computing has penetrated these application areas as it became less expensive and standardized. Iterative methods are easier than direct solvers to implement on parallel computers but require approaches and solution algorithms that are different from classical methods. Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
Mathematics of Computing -- Numerical Analysis.
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.