Download Free Algebraic Methods In Logic And In Computer Science Book in PDF and EPUB Free Download. You can read online Algebraic Methods In Logic And In Computer Science and write the review.

This comprehensive text demonstrates how various notions of logic can be viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial- gaggles, and tonoids. An imporatant sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.
This book constitutes the proceedings of the 16th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2017, held in Lyon, France, in May 2017. The 17 revised full papers and 2 invited papers presented together with 1 invited abstract were carefully selected from 28 submissions. Topics covered range from mathematical foundations to applications as conceptual and methodological tools in computer science and beyond.
A new model-theoretic approach to universal algebra is offered in this book. Written for computer scientists, it presents a systematic development of the methods and results of universal algebra that are useful in a variety of applications in computer science. The notation is simple and the concepts are clearly presented. The book concerns the algebraic characterization of axiomatic classes of algebras (equational, implicational, and universal Horn classes) by closure operators generalizing the famous Birkhoff Variety Theorem, and the algebraic characterization of the related theories. The book also presents a thorough study of term rewriting systems. Besides basic notions, the Knuth-Bendix completion procedure and termination proof methods are considered. A third main topic is that of fixpoint techniques and complete ordered algebras. Algebraic specifications of abstract data types and algebraic semantics of recursive program schemes are treated as applications. The book is self-contained and suitable both as a textbook for graduate courses and as a reference for researchers.
This book constitutes the proceedings of the 18th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2020, which was due to be held in Palaiseau, France, in April 2020. The conference was cancelled due to the COVID-19 pandemic. The 20 full papers presented together with 3 invited abstracts were carefully selected from 29 submissions. Topics covered range from mathematical foundations to applications as conceptual and methodological tools in computer science and beyond.
This book constitutes the proceedings of the 17th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2018, held in Groningen, The Netherlands, in October/November 2018. The 21 full papers and 1 invited paper presented together with 2 invited abstracts and 1 abstract of a tutorial were carefully selected from 31 submissions. The papers are organized in the following topics: Theoretical foundations; reasoning about computations and programs; and applications and tools.
This book is a tribute to Professor Ewa Orłowska, a Polish logician who was celebrating the 60th year of her scientific career in 2017. It offers a collection of contributed papers by different authors and covers the most important areas of her research. Prof. Orłowska made significant contributions to many fields of logic, such as proof theory, algebraic methods in logic and knowledge representation, and her work has been published in 3 monographs and over 100 articles in internationally acclaimed journals and conference proceedings. The book also includes Prof. Orłowska’s autobiography, bibliography and a trialogue between her and the editors of the volume, as well as contributors' biographical notes, and is suitable for scholars and students of logic who are interested in understanding more about Prof. Orłowska’s work.
This book constitutes the proceedings of the 12 International Conference on Relational and Algebraic Methods in Computer Science, RAMICS 2011, held in Rotterdam, The Netherlands, in May/June 2011. This conference merges the RelMICS (Relational Methods in Computer Science) and AKA (Applications of Kleene Algebra) conferences, which have been a main forum for researchers who use the calculus of relations and similar algebraic formalisms as methodological and conceptual tools. Relational and algebraic methods and software tools turn out to be useful for solving problems in social choice and game theory. For that reason this conference included a special track on Computational Social Choice and Social Software. The 18 papers included were carefully reviewed and selected from 27 submissions. In addition the volume contains 2 invited tutorials and 5 invited talks.
This book constitutes the proceedings of the 15th International Conference on Relational and Algebraic Methods in Computer Science, RAMiCS 2015, held in Braga, Portugal, in September/October 2015. The 20 revised full papers and 3 invited papers presented were carefully selected from 25 submissions. The papers deal with the theory of relation algebras and Kleene algebras, process algebras; fixed point calculi; idempotent semirings; quantales, allegories, and dynamic algebras; cylindric algebras, and about their application in areas such as verification, analysis and development of programs and algorithms, algebraic approaches to logics of programs, modal and dynamic logics, interval and temporal logics.
Logic is, and should be, the core subject area of modern mathemat ics. The blueprint for twentieth century mathematical thought, thanks to Hilbert and Bourbaki, is the axiomatic development of the subject. As a result, logic plays a central conceptual role. At the same time, mathematical logic has grown into one of the most recondite areas of mathematics. Most of modern logic is inaccessible to all but the special ist. Yet there is a need for many mathematical scientists-not just those engaged in mathematical research-to become conversant with the key ideas of logic. The Handbook of Mathematical Logic, edited by Jon Bar wise, is in point of fact a handbook written by logicians for other mathe maticians. It was, at the time of its writing, encyclopedic, authoritative, and up-to-the-moment. But it was, and remains, a comprehensive and authoritative book for the cognoscenti. The encyclopedic Handbook of Logic in Computer Science by Abramsky, Gabbay, and Maibaum is a wonderful resource for the professional. But it is overwhelming for the casual user. There is need for a book that introduces important logic terminology and concepts to the working mathematical scientist who has only a passing acquaintance with logic. Thus the present work has a different target audience. The intent of this handbook is to present the elements of modern logic, including many current topics, to the reader having only basic mathe matical literacy.