Download Free Algebraic Geometry Proceedings 21st Summer Institute American Mathematical Society Book in PDF and EPUB Free Download. You can read online Algebraic Geometry Proceedings 21st Summer Institute American Mathematical Society and write the review.

'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, and to play the role of the missing rational cohomology. This work contains the texts of the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991.
This volume contains the proceedings of the AMS-SIAM-IMS Joint Summer Research Conference on Modeling the Dynamics of Human Diseases: Emerging Paradigms and Challenges, held in Snowbird, Utah, July 17-21, 2005. The goal of the conference was to bring together leading and upcoming researchers to discuss the latest advances and challenges associated with the modeling of the dynamics of emerging and re-emerging diseases, and to explore various control strategies. The articles included in this book are devoted to some of the significant recent advances, trends, and challenges associated with the mathematical modeling and analysis of the dynamics and control of some diseases of public health importance. In addition to illustrating many of the diverse prevailing epidemiological challenges, together with the diversity of mathematical approaches needed to address them, this book provides insights on a number of topical modeling issues such as the modeling and control of mosquito-borne diseases, respiratory diseases, animal diseases (such as foot-and-mouth disease), cancer and tumor growth modeling, influenza, HIV, HPV, rotavirus, etc. This book also touches upon other important topics such as the use of modeling i
Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.
Proceedings of the Conference on Algebra and Algebraic Geometry with Applications, July 19 – 26, 2000, at Purdue University to honor Professor Shreeram S. Abhyankar on the occasion of his seventieth birthday. Eighty-five of Professor Abhyankar's students, collaborators, and colleagues were invited participants. Sixty participants presented papers related to Professor Abhyankar's broad areas of mathematical interest. Sessions were held on algebraic geometry, singularities, group theory, Galois theory, combinatorics, Drinfield modules, affine geometry, and the Jacobian problem. This volume offers an outstanding collection of papers by expert authors.
The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.
Mirror symmetry began when theoretical physicists made some astonishing predictions about rational curves on quintic hypersurfaces in four-dimensional projective space. Understanding the mathematics behind these predictions has been a substantial challenge. This book is the first completely comprehensive monograph on mirror symmetry, covering the original observations by the physicists through the most recent progress made to date. Subjects discussed include toric varieties, Hodge theory, Kahler geometry, moduli of stable maps, Calabi-Yau manifolds, quantum cohomology, Gromov-Witten invariants, and the mirror theorem. This title features: numerous examples worked out in detail; an appendix on mathematical physics; an exposition of the algebraic theory of Gromov-Witten invariants and quantum cohomology; and, a proof of the mirror theorem for the quintic threefold.