Download Free Algebraic Geometry And Algebraic Number Theory Procs Of The Spcial Prg At The Nankai Institute Of Maths Book in PDF and EPUB Free Download. You can read online Algebraic Geometry And Algebraic Number Theory Procs Of The Spcial Prg At The Nankai Institute Of Maths and write the review.

New Edition available hereEtale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.
Shiing-Shen Chern (1911-2004) was one of the leading differential geometers of the twentieth century. In 1946, he founded the Mathematical Institute of Academia Sinica in Shanghai, which was later moved to Nanking. In 1981, he founded the Mathematical Sciences Research Institute (MSRI) at Berkeley and acted as the director until 1984. In 1985, he founded the Nankai Institute of Mathematics in Tianjin. He was awarded the National Medal of Science in 1975; the Wolf Prize in mathematics in 1984; and the Shaw Prize in mathematical sciences in 2004.Chern's works span all the classic fields of differential geometry: the Chern-Simons theory; the Chern-Weil theory, linking curvature invariants to characteristic classes; Chern classes; and other areas such as projective differential geometry and webs that are mathematically rich but currently have a lower profile. He also published work in integral geometry, value distribution theory of holomorphic functions, and minimal submanifolds.Inspired by Chern and his work, former colleagues, students and friends — themselves highly regarded mathematicians in their own right — come together to honor and celebrate Chern's huge contributions. The volume, organized by Phillip Griffiths of the Institute for Advanced Study (Princeton), contains contributions by Michael Atiyah (University of Edinburgh), C-M Bai (Nankai), Robert Bryant (Duke University), Kung-Ching Chang (Peking University), Jeff Cheeger (New York University), Simon K Donaldson (Imperial College), Hélène Esnault (Universität Duisburg-Essen), Mo-Lin Ge (Nankai), Mark Green (University of California at Los Angeles), Phillip Griffiths (Institute for Advanced Study), F Reese Harvey (Rice University), Alain Hénaut (Université Bordeaux 1), Niky Kamran (McGill University), Bruce Kleiner (Yale), H Blaine Lawson, Jr (Suny at Stony Brook), Yiming Long (Nankai), Xiaonan Ma (UMR 7640 du CNRS), Luc Pirio (IRMAR, France), Graeme Segal (Oxford), Gang Tian (MIT), Jean-Marie Trepreau (Institut de Mathématiques de Jussieu), Jeff Viaclovsky (MIT), Wei Wang (Nankai), Wentsun Wu (Chinese Academy of Sciences), C N Yang (Tsinghua), Tan Zhang (Murray State University), Weiping Zhang (Nankai) and others.
Can artificial intelligence learn mathematics? The question is at the heart of this original monograph bringing together theoretical physics, modern geometry, and data science. The study of Calabi–Yau manifolds lies at an exciting intersection between physics and mathematics. Recently, there has been much activity in applying machine learning to solve otherwise intractable problems, to conjecture new formulae, or to understand the underlying structure of mathematics. In this book, insights from string and quantum field theory are combined with powerful techniques from complex and algebraic geometry, then translated into algorithms with the ultimate aim of deriving new information about Calabi–Yau manifolds. While the motivation comes from mathematical physics, the techniques are purely mathematical and the theme is that of explicit calculations. The reader is guided through the theory and provided with explicit computer code in standard software such as SageMath, Python and Mathematica to gain hands-on experience in applications of artificial intelligence to geometry. Driven by data and written in an informal style, The Calabi–Yau Landscape makes cutting-edge topics in mathematical physics, geometry and machine learning readily accessible to graduate students and beyond. The overriding ambition is to introduce some modern mathematics to the physicist, some modern physics to the mathematician, and machine learning to both.
This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to ShiingOCoshen Chern and Andr(r) Weil, as well as a proof of the GaussOCoBonnetOCoChern theorem based on the MathaiOCoQuillen construction of Thom forms; the second part presents analytic proofs of the Poincar(r)OCoHopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Contents: ChernOCoWeil Theory for Characteristic Classes; Bott and DuistermaatOCoHeckman Formulas; GaussOCoBonnetOCoChern Theorem; Poincar(r)OCoHopf Index Formula: An Analytic Proof; Morse Inequalities: An Analytic Proof; ThomOCoSmale and Witten Complexes; Atiyah Theorem on Kervaire Semi-characteristic. Readership: Graduate students and researchers in differential geometry, topology and mathematical physics."
This book gives an introduction to index theory for symplectic matrix paths and its iteration theory, as well as applications to periodic solution problems of nonlinear Hamiltonian systems. The applications of these concepts yield new approaches to some outstanding problems. Particular attention is given to the minimal period solution problem of Hamiltonian systems and the existence of infinitely many periodic points of the Poincaré map of Lagrangian systems on tori.
Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.
This volume contains 18 research papers on algebraic geometry, algebraic number theory and algebraic groups. Two summarized surveys on Arthur's invariant trace formula and the representation theory of quantum linear groups by K F Lai and Jian-Pan Wang respectively are included.
This volume presents original research articles and extended surveys related to the mathematical interest and work of Jean-Michel Bismut. His outstanding contributions to probability theory and global analysis on manifolds have had a profound impact on several branches of mathematics in the areas of control theory, mathematical physics and arithmetic geometry. Contributions by: K. Behrend N. Bergeron S. K. Donaldson J. Dubédat B. Duplantier G. Faltings E. Getzler G. Kings R. Mazzeo J. Millson C. Moeglin W. Müller R. Rhodes D. Rössler S. Sheffield A. Teleman G. Tian K-I. Yoshikawa H. Weiss W. Werner The collection is a valuable resource for graduate students and researchers in these fields.
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
This book presents a fascinating story of the long life and great accomplishments of Jacques Hadamard (1865-1963), who was once called 'the living legend of mathematics'. As one of the last universal mathematicians, Hadamard's contributions to mathematics are landmarks in various fields. His life is linked with world history of the 20th century in a dramatic way. This work provides an inspiring view of the development of various branches of mathematics during the 19th and 20th centuries.Part I of the book portrays Hadamard's family, childhood and student years, scientific triumphs, and his personal life and trials during the first two world wars. The story is told of his involvement in the Dreyfus affair and his subsequent fight for justice and human rights. Also recounted are Hadamard's worldwide travels, his famous seminar, his passion for botany, his home orchestra, where he played the violin with Einstein, and his interest in the psychology of mathematical creativity. Hadamard's life is described in a readable and inviting way.The authors humorously weave throughout the text his jokes and the myths about him. They also movingly recount the tragic side of his life. Stories about his relatives and friends, and old letters and documents create an authentic and colorful picture. The book contains over 300 photographs and illustrations. Part II of the book includes a lucid overview of Hadamard's enormous work, spanning over six decades. The authors do an excellent job of connecting his results to current concerns.While the book is accessible to beginners, it also provides rich information of interest to experts. Vladimir Mazya and Tatyana Shaposhnikova were the 2003 laureates of the Insitut de France's Prix Alfred Verdaguer. One or more prizes are awarded each year, based on suggestions from the Academie francaise, the Academie de sciences, and the Academie de beaux-arts, for the most remarkable work in the arts, literature, and the sciences. In 2003, the award for excellence was granted in recognition of Mazya and Shaposhnikova's book, ""Jacques Hadamard, A Universal Mathematician"", which is both an historical book about a great citizen and a scientific book about a great mathematician.