Download Free Algebraic Computability And Enumeration Models Book in PDF and EPUB Free Download. You can read online Algebraic Computability And Enumeration Models and write the review.

This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples
This book constitutes the refereed proceedings of the 16th Annual Conference on Theory and Applications of Models of Computation, TAMC 2020, held in Changsha, China, in October 2020. The 37 full papers were carefully reviewed and selected from 83 submissions. The main themes of the selected papers are computability, complexity, algorithms, information theory and their extensions to machine learning theory and foundations of artificial intelligence.
This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM 1999 Summer Conference on Computability Theory and Applications, which focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from "pure" computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This book questions the relevance of computation to the physical universe. Our theories deliver computational descriptions, but the gaps and discontinuities in our grasp suggest a need for continued discourse between researchers from different disciplines, and this book is unique in its focus on the mathematical theory of incomputability and its relevance for the real world. The core of the book consists of thirteen chapters in five parts on extended models of computation; the search for natural examples of incomputable objects; mind, matter, and computation; the nature of information, complexity, and randomness; and the mathematics of emergence and morphogenesis. This book will be of interest to researchers in the areas of theoretical computer science, mathematical logic, and philosophy.
This volume results from two programs that took place at the Institute for Mathematical Sciences at the National University of Singapore: Aspects of Computation — in Celebration of the Research Work of Professor Rod Downey (21 August to 15 September 2017) and Automata Theory and Applications: Games, Learning and Structures (20-24 September 2021).The first program was dedicated to the research work of Rodney G. Downey, in celebration of his 60th birthday. The second program covered automata theory whereby researchers investigate the other end of computation, namely the computation with finite automata, and the intermediate level of languages in the Chomsky hierarchy (like context-free and context-sensitive languages).This volume contains 17 contributions reflecting the current state-of-art in the fields of the two programs.
In mathematics, we know there are some concepts - objects, constructions, structures, proofs - that are more complex and difficult to describe than others. Computable structure theory quantifies and studies the complexity of mathematical structures, structures such as graphs, groups, and orderings. Written by a contemporary expert in the subject, this is the first full monograph on computable structure theory in 20 years. Aimed at graduate students and researchers in mathematical logic, it brings new results of the author together with many older results that were previously scattered across the literature and presents them all in a coherent framework, making it easier for the reader to learn the main results and techniques in the area for application in their own research. This volume focuses on countable structures whose complexity can be measured within arithmetic; a forthcoming second volume will study structures beyond arithmetic.
This book constitutes the refereed proceedings of the 17th Annual Conference on Theory and Applications of Models of Computation, TAMC 2022, held as a virtual event, in September 2022. The 33 full papers were carefully reviewed and selected from 75 submissions. The main themes of the selected papers are computability, complexity, algorithms, information theory and their extensions to machine learning theory, and foundations of artificial intelligence.
This Festschrift is published in honor of Rodney G. Downey, eminent logician and computer scientist, surfer and Scottish country dancer, on the occasion of his 60th birthday. The Festschrift contains papers and laudations that showcase the broad and important scientific, leadership and mentoring contributions made by Rod during his distinguished career. The volume contains 42 papers presenting original unpublished research, or expository and survey results in Turing degrees, computably enumerable sets, computable algebra, computable model theory, algorithmic randomness, reverse mathematics, and parameterized complexity, all areas in which Rod Downey has had significant interests and influence. The volume contains several surveys that make the various areas accessible to non-specialists while also including some proofs that illustrate the flavor of the fields.
This handbook volume covers fundamental topics of semantics in logic and computation. The chapters (some monographic in length), were written following years of co-ordination and follow a thematic point of view. The volume brings the reader up to front line research, and is indispensable to any serious worker in the areas.