Download Free Algebraic Codes On Lines Planes And Curves Book in PDF and EPUB Free Download. You can read online Algebraic Codes On Lines Planes And Curves and write the review.

The past few years have witnessed significant developments in algebraic coding theory. This book provides an advanced treatment of the subject from an engineering perspective, covering the basic principles and their application in communications and signal processing. Emphasis is on codes defined on the line, on the plane, and on curves, with the core ideas presented using commutative algebra and computational algebraic geometry made accessible using the Fourier transform. Starting with codes defined on a line, a background framework is established upon which the later chapters concerning codes on planes, and on curves, are developed. The decoding algorithms are developed using the standard engineering approach applied to those of Reed-Solomon codes, enabling them to be evaluated against practical applications. Integrating recent developments in the field into the classical treatment of algebraic coding, this is an invaluable resource for graduate students and researchers in telecommunications and applied mathematics.
This well-balanced text touches on theoretical and applied aspects of protecting digital data. The reader is provided with the basic theory and is then shown deeper fascinating detail, including the current state of the art. Readers will soon become familiar with methods of protecting digital data while it is transmitted, as well as while the data is being stored. Both basic and advanced error-correcting codes are introduced together with numerous results on their parameters and properties. The authors explain how to apply these codes to symmetric and public key cryptosystems and secret sharing. Interesting approaches based on polynomial systems solving are applied to cryptography and decoding codes. Computer algebra systems are also used to provide an understanding of how objects introduced in the book are constructed, and how their properties can be examined. This book is designed for Masters-level students studying mathematics, computer science, electrical engineering or physics.
The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.
Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.
This fundamental monograph introduces both the probabilistic and algebraic aspects of information theory and coding. It has evolved from the authors' years of experience teaching at the undergraduate level, including several Cambridge Maths Tripos courses. The book provides relevant background material, a wide range of worked examples and clear solutions to problems from real exam papers. It is a valuable teaching aid for undergraduate and graduate students, or for researchers and engineers who want to grasp the basic principles.
Today's pervasive computing and communications networks have created an intense need for secure and reliable cryptographic systems. Bringing together a fascinating mixture of topics in engineering, mathematics, computer science, and informatics, this book presents the timeless mathematical theory underpinning cryptosystems both old and new. Major branches of classical and modern cryptography are discussed in detail, from basic block and stream cyphers through to systems based on elliptic and hyperelliptic curves, accompanied by concise summaries of the necessary mathematical background. Practical aspects such as implementation, authentication and protocol-sharing are also covered, as are the possible pitfalls surrounding various cryptographic methods. Written specifically with engineers in mind, and providing a solid grounding in the relevant algorithms, protocols and techniques, this insightful introduction to the foundations of modern cryptography is ideal for graduate students and researchers in engineering and computer science, and practitioners involved in the design of security systems for communications networks.
Providing in-depth treatment of error correction Error Correction Coding: Mathematical Methods and Algorithms, 2nd Edition provides a comprehensive introduction to classical and modern methods of error correction. The presentation provides a clear, practical introduction to using a lab-oriented approach. Readers are encouraged to implement the encoding and decoding algorithms with explicit algorithm statements and the mathematics used in error correction, balanced with an algorithmic development on how to actually do the encoding and decoding. Both block and stream (convolutional) codes are discussed, and the mathematics required to understand them are introduced on a “just-in-time” basis as the reader progresses through the book. The second edition increases the impact and reach of the book, updating it to discuss recent important technological advances. New material includes: Extensive coverage of LDPC codes, including a variety of decoding algorithms. A comprehensive introduction to polar codes, including systematic encoding/decoding and list decoding. An introduction to fountain codes. Modern applications to systems such as HDTV, DVBT2, and cell phones Error Correction Coding includes extensive program files (for example, C++ code for all LDPC decoders and polar code decoders), laboratory materials for students to implement algorithms, and an updated solutions manual, all of which are perfect to help the reader understand and retain the content. The book covers classical BCH, Reed Solomon, Golay, Reed Muller, Hamming, and convolutional codes which are still component codes in virtually every modern communication system. There are also fulsome discussions of recently developed polar codes and fountain codes that serve to educate the reader on the newest developments in error correction.
This book constitutes the refereed proceedings of the Third International Workshop on Coding and Cryptology, IWCC 2011, held in Qingdao, China, May 30-June 3, 2011. The 19 revised full technical papers are contributed by the invited speakers of the workshop. The papers were carefully reviewed and cover a broad range of foundational and methodological as well as applicative issues in coding and cryptology, as well as related areas such as combinatorics.
Using easy-to-follow mathematics, this textbook provides comprehensive coverage of block codes and techniques for reliable communications and data storage. It covers major code designs and constructions from geometric, algebraic, and graph-theoretic points of view, decoding algorithms, error control additive white Gaussian noise (AWGN) and erasure, and dataless recovery. It simplifies a highly mathematical subject to a level that can be understood and applied with a minimum background in mathematics, provides step-by-step explanation of all covered topics, both fundamental and advanced, and includes plenty of practical illustrative examples to assist understanding. Numerous homework problems are included to strengthen student comprehension of new and abstract concepts, and a solutions manual is available online for instructors. Modern developments, including polar codes, are also covered. An essential textbook for senior undergraduates and graduates taking introductory coding courses, students taking advanced full-year graduate coding courses, and professionals working on coding for communications and data storage.