Download Free Aircraft Performance Design Book in PDF and EPUB Free Download. You can read online Aircraft Performance Design and write the review.

Balancing technical material with important historical aspects of the invention and design of aeroplanes, this book develops aircraft performance techniques from first principles and applies them to real aeroplanes.
Aircraft PERFORMANCE STRAIGHTFORWARD METHODS TO DESIGN AND OPERATE AIRCRAFT TO MEET PERFORMANCE SPECIFICATIONS Aircraft Performance sets forth a group of tested and proven methods needed to determine the performance of an aircraft. The central theme of this book is the energy method, which enhances understanding of the standard methods and provides accessibility to advanced topics. As a result, readers gain a thorough understanding of the performance issues involved in operating an aircraft in an efficient and economic manner. While covering all the standard topics—level and climbing flight, range and endurance, take-off and landing, and maneuvering flight—the book focuses on the energy methods applied to path performance analysis. Throughout the text, numerous examples from both the commercial and military sectors show readers how the concepts and calculations are applied to real-life situations. Problems, ranging from basic to complex, test the readers’ understanding and provide an opportunity for essential practice. To help focus the readers’ attention on core issues, this text assumes that aerodynamics and propulsion are known inputs. Special appendices are provided to present some aerodynamic and propulsive equations and data. In general, topics are separated into horizontal and vertical plane approaches. Following an introduction and overview, basic energy concepts are employed to obtain a fundamental performance equation. This text, with its extensive use of examples and problem sets, is ideal for upper- level undergraduate and graduate students in engineering. It also serves as a reference for design engineers in both military and industrial sectors who want a set of clear and reliable methods to calculate aircraft performance.
Describes the principles and equations required for evaluating the performance of an aircraft.
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey
Aircraft Performance: An Engineering Approach introduces flight performance analysis techniques that enable readers to determine performance and flight capabilities of aircraft. Flight performance analysis for prop-driven and jet aircraft is explored, supported by examples and illustrations, many in full color. MATLAB programming for performance analysis is included, and coverage of modern aircraft types is emphasized. The text builds a strong foundation for advanced coursework in aircraft design and performance analysis.
A self-contained in-depth treatment of aircraft performance, designed for a first course in aeronautical or aerospace engineering for undergraduate engineers. Provides an understanding of why conventional aircraft look and fly the way they do. This well written text covers turbofan and turboprop propulsion, subjects often avoided in other texts. New to the text is the treatment of wind effects on aircraft. Includes illustrative examples and references to practical piloting procedures and the significance of parameters.
Find the right answer the first time with this useful handbook of preliminary aircraft design. Written by an engineer with close to 20 years of design experience, General Aviation Aircraft Design: Applied Methods and Procedures provides the practicing engineer with a versatile handbook that serves as the first source for finding answers to realistic aircraft design questions. The book is structured in an "equation/derivation/solved example" format for easy access to content. Readers will find it a valuable guide to topics such as sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design. In most cases, numerical examples involve actual aircraft specs. Concepts are visually depicted by a number of useful black-and-white figures, photos, and graphs (with full-color images included in the eBook only). Broad and deep in coverage, it is intended for practicing engineers, aerospace engineering students, mathematically astute amateur aircraft designers, and anyone interested in aircraft design. - Organized by articles and structured in an "equation/derivation/solved example" format for easy access to the content you need - Numerical examples involve actual aircraft specs - Contains high-interest topics not found in other texts, including sizing of horizontal and vertical tails to minimize drag, sizing of lifting surfaces to ensure proper dynamic stability, numerical performance methods, and common faults and fixes in aircraft design - Provides a unique safety-oriented design checklist based on industry experience - Discusses advantages and disadvantages of using computational tools during the design process - Features detailed summaries of design options detailing the pros and cons of each aerodynamic solution - Includes three case studies showing applications to business jets, general aviation aircraft, and UAVs - Numerous high-quality graphics clearly illustrate the book's concepts (note: images are full-color in eBook only)
Pilots, aviation students, kitplane builders, aircraft fleet operators and aeronautical engineers can all determine how their propeller-driven airplanes will perform, under any conditions, by using the step-by-step bootstrap approach introduced in this book. A few routine flying manoeuvres (climbs, glides, a level speed run) will give the necessary nine numbers. High-school level calculations then give performance numbers with much greater detail and accuracy than many other methods - for the reader's individual aircraft.