Download Free Air Mass Computer Program For Atmospheric Transmittance Radiance Calculation Book in PDF and EPUB Free Download. You can read online Air Mass Computer Program For Atmospheric Transmittance Radiance Calculation and write the review.

Calculations of atmospheric transmittance and radiance require the knowledge of the integrated amounts of the absorbing gases along the path. This report describes the calculation of the integrated amounts ('air mass' or 'column density') for various infrared absorbing gases for an arbitrary slant path through the atmosphere, including the effects of both curvature and refraction, and presents a Fortran program. FSCATM, to perform the calculation. Among the features of FSCATM are: 1. It calculates the layer-by-layer integrated absorber amounts and density-weighted pressure and temperature for an arbitrary slant path through the atmosphere. 2. It assumes a spherically symmetric atmospheric with exponential profiles of density and refractivity between layer boundaries. 3. It allows a variety of options for specifying the slant path. 4. It includes six representative atmospheric profiles of pressure and temperature, and of density for the gases H2O, CO2, O3, N2O, CO, CH3, and O2 and has provision for user-supplied profiles of up to 20 gases. 5. The output layering may either be generated internally or supplied by the user. 6. It portable to 32 bit word computers in single precision and compatible with both ANSI Standard FORTRAN 66 and 77. 7. It is modular and easily modified to suit the users' particular needs. A discussion of atmospheric profile data and a survey of the literature are included in appendices.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Spectroscopy of the Earth's Atmosphere and Interstellar Medium focuses on the characteristics of the electromagnetic spectrum of the Earth's atmosphere in the far-infrared and microwave regions. It discusses the modes of observation in field measurements and reviews the two techniques used in the spectral region. Organized into six chapters, this volume begins with an overview of the effect of water-vapor absorption, followed by a discussion on the two frequently used method for deriving atmospheric parameters from high-resolution infrared atmospheric spectra, namely, the equivalent width (EW) technique and the nonlinear least-square fitting (NLSF). Other chapters consider the mechanisms by which interstellar clouds are formed. In addition, the book explores the composition of interstellar clouds, ion-molecule reactions, and the formation of stars. This book will be useful to anyone involved in, or interested in learning more about the field of atmospheric spectroscopy, including scientists, aeronomers, astronomers, astrophysicists, and students.