Download Free Air Bubble Entrainment In Free Surface Turbulent Flows Book in PDF and EPUB Free Download. You can read online Air Bubble Entrainment In Free Surface Turbulent Flows and write the review.

This book develops an analysis of the air entrainment processes in free-surface flows. These flows are investigated as homogeneous mixtures with variable density. Several types of air-water free-surface flows are studied: plunging jet flows, open channel flows, and turbulent water jets discharging into air. Experimental observations reported by the author confirm the concept that the air-water mixture behaves as a homogeneous compressible fluid in each case. This book will be of great interest to professionals working in many fields of engineering: chemical, civil, environmental, mechanical, mining, metallurgy, and nuclear. Covers new information on the air-water flow field: air bubble distributions, air-water velocity profiles, air bubble sizes and bubble-turbulence interactions Features new analysis is developed for each flow configuration and compared successfully with model and prototype data Includes over 372 references and more than 170 figures with over 60 photographs Presents useful information for design engineers and research-and-development scientists who require a better understanding of the fluid mechanics of air-water flows
This book comprises the papers of the International Conference on Hydraulics of Dams and Rivers Structures, held in Tehran, 26-28 April 2004. The topics covered include air-water flows, intakes and outlets, hydrodynamic forces, energy dissipators, stepped spillways, scouring and sedimentation around structures, numerical approaches in river hydrody
Comprising the Proceedings of the International Workshop on State-of-the-Art Hydraulic Engineering held in Bari, Italy on 16-19 February 2004, this volume presents an in-depth investigation of the energy loss of skimming flows under a range of discharges, step and dam heights, and channel slopes. Including a wealth of information, the volume is div
This book is a useful source of ideas and information for scientists whose work involves understanding and modelling turbulent flows with free surfaces. It has the following merits: (1) It provides a framework for developing the analysis of this field, which, although important, has received only limited study; (2) It recognizes the importance of the two-phase nature of strongly disturbed free surface flows, with both natural and technological applications; (3) It suggests possible lines of future research (especially experimental) to quantify the characteristics of flow regimes which are mainly known qualitatively at present.
Rivers form one of the lifelines in our society by providing essential services such as availability of fresh water, navigation, energy, ecosystem services, and flood conveyance. Because of this essential role, mankind has interfered continuously in order to benefit most and at the same time avoid adverse consequences such as flood risk and droughts. This has resulted in often highly engineered rivers with a narrow set of functions. In the last decades rivers are increasingly considered in a more holistic manner as a system with a multitude of interdependent processes. River research and engineering has therefore added to the river fundamentals also themes like ecohydraulics, consequences of climate change, and urbanisation. River Flow 2020 contains the contributions presented at the 10th conference on Fluvial Hydraulics, River Flow 2020, organised under the auspices of the Committee on Fluvial Hydraulics of the International Association for Hydro-Environment Engineering and Research (IAHR). What should have been a lively physical gathering of researchers, students and practitioners, was converted into an online event as the COVID-19 pandemic hindered international travelling and large gatherings of people. Nevertheless, the fluvial hydraulics community showed their interest and to be very much alive with a high number of participations for such event. Since its first edition in 2002, in Louvain-la-Neuve, this series of conferences has found a large and loyal audience in the river research and engineering community while being also attractive to the new researchers and young professionals. This is highlighted by the large number of contributions applying for the Coleman award for young researchers, and also by the number of applications and attendants to the Master Classes which are aimed at young researchers and students. River Flow 2020 aims to provide an updated overview of the ongoing research in this wide range of topics, and contains five major themes which are focus of research in the fluvial environment: river fundamentals, the digital river, the healthy river, extreme events and rivers under pressure. Other highlights of River Flow 2020 include the substantial number of interdisciplinary subthemes and sessions of special interest. The contributions will therefore be of interest to academics in hydraulics, hydrology and environmental engineering as well as practitioners that would like to be updated about the newest findings and hot themes in river research and engineering.
This open access book presents a series of complicated hydraulic phenomena and related mechanism of high-speed flows in head-head dam. According to the basic hydraulic theory, detailed experiments and numerical simulations, microscopic scale analysis on cavitation bubbles, air bubbles, turbulent eddy vortices and sand grains are examined systemically. These investigations on microscopic fluid mechanics, including cavitation erosion, aeration protection, air–water flow, energy dissipation and river-bed scouring, allow a deep understanding of hydraulics in high-head dams. This book provides reference for designers and researchers in hydraulic engineering, environment engineering and fluid mechanics.
A useful source of ideas and information for scientists whose work involves understanding and modelling turbulent flows with free surfaces.
Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow and transport in rivers, estuaries, lakes, groundwater and the atmosphere; it is a topic of increasing importance for decision makers, engineers, and researchers alike. The second edition of the successful textbook "Fluid Mechanics of Environmental Interfaces" is still aimed at providing a comprehensive overview of fluid mechanical processes occurring at the different interfaces existing in the realm of EFM, such as the air-water interface, the air-land interface, the water-sediment interface, the surface water-groundwater interface, the water-vegetation interface, and the water-biological systems interface. Across any of these interfaces mass, momentum, and heat are exchanged through different fluid mechanical processes over various spatial and temporal scales. In this second edition, the unique feature of this book, considering all the topics from the point of view of the concept of environmental interface, was maintained while the chapters were updated and five new chapters have been added to significantly enlarge the coverage of the subject area. The book starts with a chapter introducing the concept of EFM and its scope, scales, processes and systems. Then, the book is structured in three parts with fifteen chapters. Part one, which is composed of four chapters, covers the processes occurring at the interfaces between the atmosphere and the surface of the land and the seas, including the transport of dust and the dispersion of passive substances within the atmosphere. Part two deals in five chapters with the fluid mechanics at the air-water interface at small scales and sediment-water interface, including the advective diffusion of air bubbles, the hyporheic exchange and the tidal bores. Finally, part three discusses in six chapters the processes at the interfaces between fluids and biotic systems, such as transport processes in the soil-vegetation-lower atmosphere system, turbulence and wind above and within the forest canopy, flow and mass transport in vegetated open channels, transport processes to and from benthic plants and animals and coupling between interacting environmental interfaces. Each chapter has an educational part, which is structured in four sections: a synopsis of the chapter, a list of keywords that the reader should have encountered in the chapter, a list of questions and a list of unsolved problems related to the topics covered by the chapter. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics, atmospheric science, meteorology, limnology, oceanography, and applied mathematics.
Environmental Hydraulics is a new text for students and professionals studying advanced topics in river and estuarine systems. The book contains the full range of subjects on open channel flows, including mixing and dispersion, Saint-Venant equations method of characteristics and interactions between flowing water and its surrondings (air entrainment, sediment transport).Following the approach of Hubert Chanson's highly successful undergraduate textbook Hydraulics of Open Channel Flow, the reader is guided step-by-step from the basic principles to more advanced practical applications. Each section of the book contains many revision exercises, problems and assignments to help the reader test their learning in practical situations.·Complete text on river and estuarine systems in a single volume·Step-by-step guide to practical applications·Many worked examples and exercises