Download Free Aiaa 78 205 Aiaa 78 285 With Omissions In Numbering Book in PDF and EPUB Free Download. You can read online Aiaa 78 205 Aiaa 78 285 With Omissions In Numbering and write the review.

Aeronautical Engineer's Data Bookis an essential handy guide containing useful up to date information regularly needed by the student or practising engineer. Covering all aspects of aircraft, both fixed wing and rotary craft, this pocket book provides quick access to useful aeronautical engineering data and sources of information for further in-depth information. - Quick reference to essential data - Most up to date information available
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
The NACA and aircraft propulsion, 1915-1958 -- NASA gets to work, 1958-1975 -- The shift toward commercial aviation, 1966-1975 -- The quest for propulsive efficiency, 1976-1989 -- Propulsion control enters the computer era, 1976-1998 -- Transiting to a new century, 1990-2008 -- Toward the future
The X-31 Enhanced Fighter Maneuverability Demonstrator was unique among experimental aircraft. A joint effort of the United States and Germany, the X-31 was the only X-plane to be designed, manufactured, and flight tested as an international collaboration. It was also the only X-plane to support two separate test programs conducted years apart, one administered largely by NASA and the other by the U.S. Navy, as well as the first X-plane ever to perform at the Paris Air Show. Flying Beyond the Stall begins by describing the government agencies and private-sector industries involved in the X-31 program, the genesis of the supermaneuverability concept and its initial design breakthroughs, design and fabrication of two test airframes, preparation for the X-31's first flight, and the first flights of Ship #1 and Ship #2. Subsequent chapters discuss envelope expansion, handling qualities (especially at high angles of attack), and flight with vectored thrust. The book then turns to the program's move to NASA's Dryden Flight Research Center and actual flight test data. Additional tasking, such as helmet-mounted display evaluations, handling quality studies, aerodynamic parameter estimation, and a "tailless" study are also discussed.The book describes how, in the aftermath of a disastrous accident with Ship #1 in 1995, Ship #2 was prepared for its outstanding participation in the Paris Air Show. The aircraft was then shipped back to Edwards AFB and put into storage until the late 1990s, when it was refurbished for participation in the U. S. Navy's VECTOR program. The book ends with a comprehensive discussion of lessons learned and includes an Appendix containing detailed information.
This volume from The NASA History Series presents an overview of the science of hypersonics, the study of flight at speeds at which the physics of flows is dominated by aerodynamic heating. The survey begins during the years immediately following World War II, with the first steps in hypersonic research: the development of missile nose cones and the X-15; the earliest concepts of hypersonic propulsion; and the origin of the scramjet engine. Next, it addresses the re-entry problem, which came to the forefront during the mid-1950s, showing how work in this area supported the manned space program and contributed to the development of the orbital shuttle. Subsequent chapters explore the fading of scramjet studies and the rise of the National Aerospace Plane (NASP) program of 1985–95, which sought to lay groundwork for single-stage vehicles. The program's ultimate shortcomings — in terms of aerodynamics, propulsion, and materials — are discussed, and the book concludes with a look at hypersonics in the post-NASP era, including the development of the X-33 and X-34 launch vehicles, further uses for scramjets, and advances in fluid mechanics. Clearly, ongoing research in hypersonics has yet to reach its full potential, and readers with an interest in aeronautics and astronautics will find this book a fascinating exploration of the field's history and future.
This book presents a detailed look at high-lift aerodynamics, which deals with the aerodynamic behavior of lift augmentation means from various approaches. After an introductory chapter, the book discusses the physical limits of lift generation, giving the lift generation potential. It then explains what is needed for an aircraft to fly safely by analyzing the high-lift-related requirements for certifying an aircraft. Aircraft needs are also analyzed to improve performance during takeoff, approach, and landing. The book discusses in detail the applied means to increase the lift coefficient by either passive and active high-lift systems. It includes slotless and slotted high-lift flaps, active and passive vortex generating devices, boundary and circulation control, and powered lift. Describing methods that are used to evaluate and design high-lift systems in an aerodynamic sense, the book briefly covers numerical as well as experimental simulation methods. It also includes a chapter on the aerodynamic design of high-lift systems. FEATURES Provides an understanding of the physics of flight during takeoff and landing from aerodynamics to flight performance and from simulation to design Discusses the physical limits of lift generation, giving the lift generation potential Concentrates on the specifics of high-lift aerodynamics to provide a first insight Analyzes aircraft needs to improve performance during takeoff, approach, and landing Focuses on civil transport aircraft applications but also includes the associated physics that apply to all aircraft This book is intended for graduate students in aerospace programs studying advanced aerodynamics and aircraft design. It also serves as a professional reference for practicing aerospace and mechanical engineers who are working on aircraft design issues related to takeoff and landing.
Written with students of aerospace or aeronautical engineering firmly in mind, this is a practical and wide-ranging book that draws together the various theoretical elements of aircraft design - structures, aerodynamics, propulsion, control and others - and guides the reader in applying them in practice. Based on a range of detailed real-life aircraft design projects, including military training, commercial and concept aircraft, the experienced UK and US based authors present engineering students with an essential toolkit and reference to support their own project work.All aircraft projects are unique and it is impossible to provide a template for the work involved in the design process. However, with the knowledge of the steps in the initial design process and of previous experience from similar projects, students will be freer to concentrate on the innovative and analytical aspects of their course project. The authors bring a unique combination of perspectives and experience to this text. It reflects both British and American academic practices in teaching aircraft design. Lloyd Jenkinson has taught aircraft design at both Loughborough and Southampton universities in the UK and Jim Marchman has taught both aircraft and spacecraft design at Virginia Tech in the US.* Demonstrates how basic aircraft design processes can be successfully applied in reality* Case studies allow both student and instructor to examine particular design challenges * Covers commercial and successful student design projects, and includes over 200 high quality illustrations
Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.