Download Free Ai Ethical Issues And Explainability Applied Biometrics Book in PDF and EPUB Free Download. You can read online Ai Ethical Issues And Explainability Applied Biometrics and write the review.

AI has contributed a lot and biometrics is no exception. To make AI solutions commercialized/fully functional, one requires trustworthy and explainable AI (XAI) solutions while respecting ethical issues. Within the scope of biometrics, the book aims at both revisiting ethical AI principles by taking into account state-of-the-art AI-guided tools and their responsibilities i.e., responsible AI. With this, the long-term goal is to connect with how we can enhance research communities that effectively integrate computational expertise (with both explainability and ethical issues). It helps combat complex and elusive global security challenges that address our national concern in understanding and disrupting the illicit economy.
AI has contributed a lot and biometrics is no exception. To make AI solutions commercialized/fully functional, one requires trustworthy and explainable AI (XAI) solutions while respecting ethical issues. Within the scope of biometrics, the book aims at both revisiting ethical AI principles by taking into account state-of-the-art AI-guided tools and their responsibilities i.e., responsible AI. With this, the long-term goal is to connect with how we can enhance research communities that effectively integrate computational expertise (with both explainability and ethical issues). It helps combat complex and elusive global security challenges that address our national concern in understanding and disrupting the illicit economy.`.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
XAI Based Intelligent Systems for Society 5.0 focuses on the development and analysis of Explainable Artificial Intelligence (XAI)-based models and intelligent systems that can be utilized for Society 5.0—characterized by a knowledge intensive, data driven, and non-monetary society. The book delves into the issues of transparency, explainability, data fusion, and interpretability, which are significant for the development of a super smart society and are addressed through XAI-based models and techniques. XAI-based deep learning models, fuzzy and hybrid intelligent systems, expert systems, and intrinsic explainable models in the context of Society 5.0 are presented in detail. The book also addresses—using XAI-based intelligent techniques—the privacy issues intrinsic in storing huge amounts of data or information in virtual space. The concept of Responsible AI, which is at the core of the future direction of XAI for Society 5.0, is also explored in this book. Finally, the application areas of XAI, including relevant case studies, are presented in the concluding chapter. This book serves as a valuable resource for graduate/post graduate students, academicians, analysts, computer scientists, engineers, researchers, professionals, and other personnel working in the area of artificial intelligence, machine learning, and intelligent systems, who are interested in creating a people-centric smart society. Defines the basic terminology and concepts surrounding explainability and related topics to bring coherence to the field Focuses on what techniques are available to improve explainability and how explainability can progress society Offers a broad range of topics, addressing multiple facets of XAI within the context of Society 5.0
As artificial intelligence (AI) transforms human resources (HR), its integration brings both opportunities and ethical challenges. AI can enhance recruitment, performance evaluation, and employee engagement. However, without careful oversight, it risks perpetuating biases, compromising privacy, and reducing transparency. It's crucial for HR professionals and organizations to adopt a responsible approach, ensuring that AI aligns with values of fairness, accountability, and respect for individual rights. Human Resource Strategies in the Era of Artificial Intelligence elucidates how AI technologies can be strategically integrated into HR functions to enhance organizational performance and employee well-being. This book offers essential ethical frameworks, guidelines, and best practices for integrating AI into HR. Aimed at HR professionals, researchers, policymakers, and technology developers, it provides the insights needed to responsibly navigate AI's complexities in the workplace, promoting ethical AI adoption and safeguarding the integrity of HR practices.
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
In the relentless battle against escalating cyber threats, data security faces a critical challenge – the need for innovative solutions to fortify encryption and decryption processes. The increasing frequency and complexity of cyber-attacks demand a dynamic approach, and this is where the intersection of cryptography and machine learning emerges as a powerful ally. As hackers become more adept at exploiting vulnerabilities, the book stands as a beacon of insight, addressing the urgent need to leverage machine learning techniques in cryptography. Machine Learning and Cryptographic Solutions for Data Protection and Network Security unveil the intricate relationship between data security and machine learning and provide a roadmap for implementing these cutting-edge techniques in the field. The book equips specialists, academics, and students in cryptography, machine learning, and network security with the tools to enhance encryption and decryption procedures by offering theoretical frameworks and the latest empirical research findings. Its pages unfold a narrative of collaboration and cross-pollination of ideas, showcasing how machine learning can be harnessed to sift through vast datasets, identify network weak points, and predict future cyber threats.
This open access book introduces the reader to the foundations of AI and ethics. It discusses issues of trust, responsibility, liability, privacy and risk. It focuses on the interaction between people and the AI systems and Robotics they use. Designed to be accessible for a broad audience, reading this book does not require prerequisite technical, legal or philosophical expertise. Throughout, the authors use examples to illustrate the issues at hand and conclude the book with a discussion on the application areas of AI and Robotics, in particular autonomous vehicles, automatic weapon systems and biased algorithms. A list of questions and further readings is also included for students willing to explore the topic further.