Download Free Ai And Machine Learning Paradigms For Health Monitoring System Book in PDF and EPUB Free Download. You can read online Ai And Machine Learning Paradigms For Health Monitoring System and write the review.

This book embodies principles and applications of advanced soft computing approaches in engineering, healthcare and allied domains directed toward the researchers aspiring to learn and apply intelligent data analytics techniques. The first part covers AI, machine learning and data analytics tools and techniques and their applications to the class of several hospital and health real-life problems. In the later part, the applications of AI, ML and data analytics shall be covered over the wide variety of applications in hospital, health, engineering and/or applied sciences such as the clinical services, medical image analysis, management support, quality analysis, bioinformatics, device analysis and operations. The book presents knowledge of experts in the form of chapters with the objective to introduce the theme of intelligent data analytics and discusses associated theoretical applications. At last, it presents simulation codes for the problems included in the book for better understanding for beginners.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
This new volume covers the fusion of IoT and wireless communication technology for real-life applications. It discusses the current developments, trends, and latest usage of technology in wireless sensor networks (WSNs) and IoT, which offer improvement in many areas, including in enabling smart homes, in agricultural systems, for security systems, for university monitoring systems, and more. The volume also provides a theoretical analysis and discussion of the factors influencing smart sensing, exploring the state-of-the-art IoT elements that are designed to be analogous to WSNs. It looks at advancements in IoT systems along with a two-way usage with wireless sensor networks that span the gap between the physical and virtual worlds, leading to a hyperconnected society where devices are not only used to exchange data but also are smart devices with more capabilities. The chapters reveal how these technologies are used in smart homes, for intelligent sensor-based cognitive radio networks, for different techniques for data fusion, for the synthesis and fabrication of nanosensor devices for monitoring agricultural nutrient levels, and more. Furthermore, the fake user problems in WSNs are also investigated with a note on the current trends and the newer trends to come in near future.
This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2020), held in Krishna Engineering College, Ghaziabad, India, during December 17–18, 2020. This book discusses key concepts, challenges, and potential solutions in connection with established and emerging topics in advanced computing, renewable energy, and network communications.
This book gathers selected papers presented at International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication (MARC 2021), held in Krishna Engineering College, Ghaziabad, India, during 10 – 11 December, 2021. This book discusses key concepts, challenges and potential solutions in connection with established and emerging topics in advanced computing, renewable energy and network communications.
The proceedings is a collection of papers presented at International Conference on Renewal Power (ICRP 2023), held during 28 – 29 March 2023 in Mewat Engineering College, Nuh, India. The book covers different topics of renewal energy sources in modern power systems. The volume focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber physical systems and internet of things in smart grid and renewable power.
This book brings together state-of-the-art advances in intelligent data analytics as driver of the future evolution of PaE systems. In the modern power and energy (PaE) domain, the increasing penetration of renewable energy sources (RES) and the consequent empowerment of consumers as a central and active solution to deal with the generation and development variability are driving the PaE system towards a historic paradigm shift. The small-scale, diversity, and especially the number of new players involved in the PaE system potentiate a significant growth of generated data. Moreover, advances in communication (between IoT devices and M2M: machine to machine, man to machine, etc.) and digitalization hugely increased the volume of data that results from PaE components, installations, and systems operation. This data is becoming more and more important for PaE systems operation, maintenance, planning, and scheduling with relevant impact on all involved entities, from producers, consumer,s and aggregators to market and system operators. However, although the PaE community is fully aware of the intrinsic value of those data, the methods to deal with it still necessitate substantial enhancements, development and research. Intelligent data analytics is thereby playing a fundamental role in this domain, by enabling stakeholders to expand their decision-making method and achieve the awareness on the PaE environment. The editors also included demonstrated codes for presented problems for better understanding for beginners.
Bioinspiration is recognized by the World Health Organization as having great promise in transforming and democratizing health systems while improving the quality, safety, and efficiency of standard healthcare in order to offer patients the tremendous opportunity to take charge of their own health. This phenomenon can enable great medical breakthroughs by helping healthcare providers improve patient care, make accurate diagnoses, optimize treatment protocols, and more. Unfortunately, the consequences can be serious if those who finance, design, regulate, or use artificial intelligence (AI) technologies for health do not prioritize ethical principles and obligations in terms of human rights and preservation of the private life. Advanced Bioinspiration Methods for Healthcare Standards, Policies, and Reform is the fruit of the fusion of AI and medicine, which brings together the latest empirical research findings in the areas of AI, bioinspiration, law, ethics, and medicine. It assists professionals in optimizing the potential benefits of AI models and bioinspired algorithms in health issues while mitigating potential dangers by examining the complex issues and innovative solutions that are linked to healthcare standards, policies, and reform. Covering topics such as genetic algorithms, health surveillance cameras, and hybrid classification algorithms, this premier reference source is an excellent resource for AI specialists, hospital administrators, health professionals, healthcare scientists, students and educators of higher education, government officials, researchers, and academicians.
Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM. Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions. Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies. Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms Benefits from extensive use of the authors’ detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.
In the evolving environment of bioinformatics, genomics, and computational biology, academic scholars are facing a challenging challenge – keeping informed about the latest research trends and findings. With unprecedented advancements in sequencing technologies, computational algorithms, and machine learning, these fields have become indispensable tools for drug discovery, disease research, genome sequencing, and more. As scholars strive to decode the language of DNA, predict protein structures, and navigate the complexities of biological data analysis, the need for a comprehensive and up-to-date resource becomes paramount. The Research Anthology on Bioinformatics, Genomics, and Computational Biology is a collection of a carefully curated selection of chapters that serves as the solution to the pressing challenge of keeping pace with the dynamic advancements in these critical disciplines. This anthology is designed to address the informational gap by providing scholars with a consolidated and authoritative source that sheds light on critical issues, innovative theories, and transformative developments in the field. It acts as a single reference point, offering insights into conceptual, methodological, technical, and managerial issues while also providing a glimpse into emerging trends and future opportunities.