Download Free Agrobacterium Biology And Its Application To Transgenic Plant Production Book in PDF and EPUB Free Download. You can read online Agrobacterium Biology And Its Application To Transgenic Plant Production and write the review.

The broad host range pathogenic bacterium Agrobacterium tumefaciens has been widely studied as a model system to understand horizontal gene flow, secretion of effector proteins into host cells, and plant-pathogen interactions. Agrobacterium-mediated plant transformation also is the major method for generating transgenic plants for research and biotechnology purposes. Agrobacterium species have the natural ability to conduct interkingdom genetic transfer from bacteria to eukaryotes, including most plant species, yeast, fungi, and even animal cells. In nature, A. tumefaciens causes crown gall disease resulting from expression in plants of auxin and cytokinin biosynthesis genes encoded by the transferred (T-) DNA. Gene transfer from A. tumefaciens to host cells requires virulence (vir) genes that reside on the resident tumor-inducing (Ti) plasmid. In addition to T-DNA, several Virulence (Vir) effector proteins are also translocated to host cells through a bacterial type IV secretion system. These proteins aid in T-DNA trafficking through the host cell cytoplasm, nuclear targeting, and T-DNA integration. Genes within native T-DNAs can be replaced by any gene of interest, making Agrobacterium species important tools for plant research and genetic engineering. In this research topic, we provided updated information on several important areas of Agrobacterium biology and its use for biotechnology purposes.
The aim of Transgenic Plants: Methods and Protocols is to provide a source of information to guide the reader through a wide range of frequently used, broadly applicable, and easily reproducible techniques involved in the gene- tion of transgenic plants. Its step-by-step approach covers a series of methods for genetically transforming plant cells and tissues, and for recovering whole transgenic plants from them. The volume then moves on to the use of sele- able and reporter markers, positive selection, marker elimination after rec- ery of transgenic plants, and the analysis of transgene integration, expression, and localization in the plant genome. Although contributors usually refer to model plants in most chapters, the protocols described herein should be widely applicable to many plant species. The last two sections are devoted to me- ods of risk assessment and to exploring the current and future applications of transgenic technology in agriculture and its social implications in a case study. Transgenic Plants: Methods and Protocols is divided into six major s- tions plus an introduction, comprising 27 chapters. Part I, the Introduction, is a review of the past, present, and perspectives of the transgenic plants, from the discovery of Agrobacterium tumefaciens as a feasible transformation vector, to its use as a tool to study gene expression and function, and the current and possible future applications of this technology in agriculture, industry, and medicine.
Agrobacterium is a plant pathogen which causes the “crown-gall” disease, a neoplastic growth that results from the transfer of a well-defined DNA segment (“transferred DNA”, or “T-DNA”) from the bacterial Ti (tumor-inducing) plasmid to the host cell, its integration into the host genome, and the expression of oncogenes contained on the T-DNA. The molecular machinery, needed for T-DNA generation and transport into the host cell and encoded by a series of chromosomal (chv) and Ti-plasmid virulence (vir) genes, has been the subject of numerous studies over the past several decades. Today, Agrobacterium is the tool of choice for plant genetic engineering with an ever expanding host range that includes many commercially important crops, flowers, and tree species. Furthermore, its recent application for the genetic transformation of non-plant species, from yeast to cultivated mushrooms and even to human cells, promises this bacterium a unique place in the future of biotechnological applications. The book is a comprehensive volume describing Agrobacterium's biology, interactions with host species, and uses for genetic engineering.
This volume reviews various facets of Agrobacterium biology, from modern aspects of taxonomy and bacterial ecology to pathogenesis, bacterial cell biology, plant and fungal transformation, natural transgenics, and biotechnology. Agrobacterium-mediated transformation is the most extensively utilized platform for generating transgenic plants, but modern biotechnology applications derive from more than 40 years of intensive basic scientific research. Many of the biological principles established by this research have served as models for other bacteria, including human and animal pathogens. Written by leading experts and highlighting recent advances, this volume serves both as an introduction to Agrobacterium biology for students as well as a more comprehensive text for research scientists.
Since the first transgenic plants were produced back in the early 1980s, there have been substantial developments towards the genetic engineering of most crops of our world. Initial studies using isolated plant cells and removing their cell walls to form protoplasts, offered the possibility of transferring genetic material by Agrobacterium-mediated gene transfer, chemical agents or electrical charges. However, in those cases were isolated protoplasts could be transformed, often, a shoot regeneration system was not available to induce the production of transgenic plants and any such regenerated plants were subject to mutation or chromosomal of cultured plant organs, such as leaf abnormalities. By the mid-1980s, the use disks, offered the convenience of combining gene transfer, plant regeneration and selection of transformants in a single system. This approach, enabled the production of stable, phenotypically-normal, transgenic potato and tomato plants in culture. By the late 1980s, the use of biolistics offered a means of inserting foreign genes into plant cells which where inaccessible to Agrobacterium infection. Even today, this technology is now standard practice for the production of some transgenic plants.
The green revolution led to the development of improved varieties of crops, especially cereals, and since then, classical or molecular breeding has resulted in the creation of economically valuable species. Thanks to recent developments in genetic engineering, it has become possible to introduce genes from different sources, such as bacteria, fungi, viruses, mice and humans, to plants. This technology has made the scientific community aware of the critical role of transgenics, not only as a means of producing stress tolerant crops but also as a platform for the production of therapeutics through molecular farming. This book discusses the commercial applications of plant transgenic technologies, including the use of transgenic cell culture approachesto improve the production of metabolites and high-value therapeutics as well as transgenic plants in pest management. It also explores generation of novel vectors, protein production using chloroplast engineering and the latest developments in this area, such as genome editing in plants. Featuring general discussions and research papers by leading international experts, it is a valuable resource for scientists, teachers, students and industrialists working in the field.
Development of transgenic crop plants, their utilization for improved agriculture, health, ecology and environment and their socio-political impacts are currently important fields in education, research and industries and also of interest to policy makers, social activists and regulatory and funding agencies. This work prepared with a class-room approach on this multidisciplinary subject will fill an existing gap and meet the requirements of such a broad section of readers. Volume 1 with ten chapters contributed by 31 eminent scientists from nine countries deliberates on the basic concepts, strategies and tools for development of transgenic crop plants, including topics such as: explants used for the generation of transgenic plants, gene transfer methods, organelle transformation, selection and screening strategies, expression and stability of transgenes, silencing undesirable genes, transgene integration, biosynthesis and biotransformation and metabolic engineering of pathways and gene discovery.
Genetic transformation of plants has revolutionized both basic and applied plant research. Plant molecular biology and physiology benefit from this power fool, as well as biotechnology. This book is a review of some of the most significant achievements that plant transformation has brought to the fields of Agrobacterium biology, crop improvement and, flower, fruit and tree amelioration. Also, it examines their impact on molecular farming, phytoremediation and RNAi tools.
Molecular Methods of Plant Analysis Concept of the Series The powerful recombinant DNA technology and related developments have had an enormous impact on molecular biology. Any treatment of plant analy sis must make use of these new methods. Developments have been so fast and the methods so powerful that the editors of Modern Methods of Plant Analy sis have now decided to rename the series Molecular Methods of Plant Analy sis. This will not change the general aims of the series, but best describes the thrust and content of the series as we go forward into the new millennium. This does not me an that all chapters apriori deal only with the methods of molecular biology, but rather that these methods are to be found in many chapters together with the more traditional methods of analysis which have seen re cent advances. The numbering of the volumes of the series therefore continues on from 20, which is the most recently published volume under the title Modern Methods of Plant Analysis.
Focused on basics and processes, this textbook teaches plant biology and agriculture applications with summary and discussion questions in each chapter. Updates each chapter to reflect advances / changes since the first edition, for example: new biotechnology tools and advances, genomics and systems biology, intellectual property issues on DNA and patents, discussion of synthetic biology tools Features autobiographical essays from eminent scientists, providing insight into plant biotechnology and careers Has a companion website with color images from the book and PowerPoint slides Links with author's own website that contains teaching slides and graphics for professors and students: http://bit.ly/2CI3mjp