Download Free Agriculture Management For Climate Change Book in PDF and EPUB Free Download. You can read online Agriculture Management For Climate Change and write the review.

This study examines the broad range of factors driving farm management decisions that can improve the environment, including drawing on the experiences of OECD countries.
According to IPCC reports, one of the greatest threats to the Earth ecosystems is climate change caused by the anthropogenic emissions of greenhouse gases, mostly carbon dioxide, mainly from the combustion of fossil fuels, cement production and land-use change which leads to an excessive temperature rise. Agriculture and forestry are responsible for quiet big emissions of greenhouse gases: CO2, CH4 and N2O, and have significant potential to reduce these emissions mainly through enhancement of CO2 absorption by terrestrial ecosystems. To evaluate the impact of agriculture on climate change, ruminant farming should be also taken into account. These animals emit considerable amounts of methane which has strong greenhouse effects. Methane emissions may be reduced by using appropriate feed for ruminants. Decreasing the meat consumption of these animals can also make an important contribution to reducing methane emissions. The methods for reducing greenhouse gas emissions through appropriate management of terrestrial ecosystems and animal husbandry are widely discussed in The Role of Agriculture in Climate Change Mitigation. The book will be of interest to academics, professionals and policy makers in environmental sciences.
Farming for Our Future examines the policies and legal reforms necessary to accelerate the adoption of practices that can make agriculture in the United States climate-neutral or better. These proven practices will also make our food system more resilient to the impacts of climate change. Agriculture's contribution to climate change is substantial--much more so than official figures suggest--and we will not be able to achieve our overall mitigation goals unless agricultural emissions sharply decline. Fortunately, farms and ranches can be a major part of the climate solution, while protecting biodiversity, strengthening rural communities, and improving the lives of the workers who cultivate our crops and rear our animals. The importance of agricultural climate solutions can not be underestimated; it is a critical element both in ensuring our food security and limiting climate change. This book provides essential solutions to address the greatest crises of our time.
Conservation agriculture is a sustainable production model that not only optimizes crop yields, but also reaps economic and environmental benefits as well. The adoption of successful conservation agriculture methods has resulted in energy savings, higher organic matter content and biotic activity in soil, increased crop-water availability and thus resilience to drought, improved recharge of aquifers, less erosion, and reduced impacts from the weather associated with climate change in general. Agricultural Impacts of Climate Change examines several important aspects of crop production, such as climate change, soil management, farm machinery, and different methods for sustainable conservation agriculture. It presents spatial distribution of a daily, monthly and annual precipitation concentration indices, Diffuse Reflectance Fourier Transform Infrared Spectroscopy for analyzing the organic matter in soil, and adaptation strategies for climate-related plant disease scenarios. It also discusses solar energy-based greenhouse modeling, precision farming using remote sensing and GIS, and various types of machinery used for conservation agriculture. Features: Examines the effects of climate change on agriculture and the related strategies for mitigation through practical, real-world examples Explores innovative on-farm technology options to increase system efficiency resulting in improved water usage Presents examples of precision farming using climate-resilient technologies
This book reviews the state of agricultural climate change mitigation globally, with a focus on identifying the feasibility, opportunities and challenges for achieving mitigation among smallholder farmers. The purpose is ultimately to accelerate efforts towards mitigating land-based climate change. While much attention has been focused on forestry for its reputed cost-effectiveness, the agricultural sector contributes about ten to twelve per cent of emissions and has a large technical and economic potential for reducing greenhouse gases. The book does not dwell on the science of emissions reduction, as this is well covered elsewhere; rather, it focuses on the design and practical implementation of mitigation activities through changing farming systems. Climate Change Mitigation and Agriculture includes chapters about experiences in developed countries, such as Canada and Australia, where these efforts also have lessons for mitigation options for smallholders in poorer nations, as well as industrialising countries such as Brazil and China. A wide range of agroecological zones and of aspects or types of farming, including livestock, crops, fish farming, fertilizer use and agroforestry, as well as economics and finance, is included. The volume presents a synthesis of current knowledge and research activities on this emerging subject. Together the chapters capture an exciting period in the development of land-based climate change mitigation as attention is increasingly focused on agriculture's role in contributing to climate change.
Global climate change is a natural process that currently appears to be strongly influenced by human activities, which increase atmospheric concentrations of greenhouse gases (GHG). Agriculture contributes about 20% of the world's global radiation forcing from carbon dioxide, methane and nitrous oxide, and produces 50% of the methane and 70% of the nitrous oxide of the human-induced emission. Managing Agricultural Greenhouse Gases synthesizes the wealth of information generated from the GRACEnet (Greenhouse gas Reduction through Agricultural Carbon Enhancement network) effort with contributors from a variety of backgrounds, and reports findings with important international applications. - Frames responses to challenges associated with climate change within the geographical domain of the U.S., while providing a useful model for researchers in the many parts of the world that possess similar ecoregions - Covers not only soil C dynamics but also nitrous oxide and methane flux, filling a void in the existing literature - Educates scientists and technical service providers conducting greenhouse gas research, industry, and regulators in their agricultural research by addressing the issues of GHG emissions and ways to reduce these emissions - Synthesizes the data from top experts in the world into clear recommendations and expectations for improvements in the agricultural management of global warming potential as an aggregate of GHG emissions
Climate Change and Agricultural Ecosystems explains the causative factors of climate change related to agriculture, soil and plants, and discusses the relevant resulting mitigation process. Agricultural ecosystems include factors from the surrounding areas where agriculture experiences direct or indirect interaction with the plants, animals, and microbes present. Changes in climatic conditions influence all the factors of agricultural ecosystems, which can potentially adversely affect their productivity. This book summarizes the different aspects of vulnerability, adaptation, and amelioration of climate change in respect to plants, crops, soil, and microbes for the sustainability of the agricultural sector and, ultimately, food security for the future. It also focuses on the utilization of information technology for the sustainability of the agricultural sector along with the capacity and adaptability of agricultural societies under climate change. Climate Change and Agricultural Ecosystems incorporates both theoretical and practical aspects, and serves as base line information for future research. This book is a valuable resource for those working in environmental sciences, soil sciences, agricultural microbiology, plant pathology, and agronomy. - Covers the role of chemicals fertilizers, environmental deposition, and xenobiotics in climate change - Discusses the impact of climate change on plants, soil, microflora, and agricultural ecosystems - Explores the mitigation of climate change by sustainable methods - Presents the role of computational modelling in climate change mitigation
Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions provides a state of the art overview of recent findings and future research challenges regarding physical, chemical and biological processes controlling soil carbon, nitrogen dynamic and greenhouse gas emissions from soils. This book is for students and academics in soil science and environmental science, land managers, public administrators and legislators, and will increase understanding of organic matter preservation in soil and mitigation of greenhouse gas emissions. Given the central role soil plays on the global carbon (C) and nitrogen (N) cycles and its impact on greenhouse gas emissions, there is an urgent need to increase our common understanding about sources, mechanisms and processes that regulate organic matter mineralization and stabilization, and to identify those management practices and processes which mitigate greenhouse gas emissions, helping increase organic matter stabilization with suitable supplies of available N. - Provides the latest findings about soil organic matter stabilization and greenhouse gas emissions - Covers the effect of practices and management on soil organic matter stabilization - Includes information for readers to select the most suitable management practices to increase soil organic matter stabilization
The Anthropocene, the time of humans. Never has human influence on the functioning of the planet been greater or in more urgent need of mitigation. Climate change, the accelerated warming of the planet’s surface attributed to human activities, is now at the forefront of global politics. The agriculture sector not only contributes to climate change but also feels the severity of its effects, with the water, carbon and nitrogen cycles all subject to modification as a result. Crop production systems are each subject to different types of threat and levels of threat intensity. There is however significant potential to both adapt to and mitigate climate change within the agricultural sector and reduce these threats. Each solution must be implemented in a sustainable manner and tailored to individual regions and farming systems. This Special Issue evaluates a variety of potential climate change adaptation and mitigation techniques that account for this spatial variation, including modification to cropping systems, Climate-Smart Agriculture and the development and growth of novel crops and crop varieties.
With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution "This book is the toolkit for making the soil itself a sponge for carbon. It’s a powerful vision."—Bill McKibben "The Carbon Farming Solution is a book we will look back upon decades from now and wonder why something so critically relevant could have been so overlooked until that time. . . . [It] describes the foundation of the future of civilization."—Paul Hawken In this groundbreaking book, Eric Toensmeier argues that agriculture—specifically, the subset of practices known as "carbon farming"—can, and should be, a linchpin of a global climate solutions platform. Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in above-ground biomass. Combined with a massive reduction in fossil fuel emissions—and in concert with adaptation strategies to our changing environment— carbon farming has the potential to bring us back from the brink of disaster and return our atmosphere to the "magic number" of 350 parts per million of carbon dioxide. Toensmeier’s book is the first to bring together these powerful strategies in one place. Includes in-depth analysis of the available research. Carbon farming can take many forms. The simplest practices involve modifications to annual crop production. Although many of these modifications have relatively low sequestration potential, they are widely applicable and easily adopted, and thus have excellent potential to mitigate climate change if practiced on a global scale. Likewise, grazing systems such as silvopasture are easily replicable, don’t require significant changes to human diet, and—given the amount of agricultural land worldwide that is devoted to pasture—can be important strategies in the carbon farming arsenal. But by far, agroforestry practices and perennial crops present the best opportunities for sequestration. While many of these systems are challenging to establish and manage, and would require us to change our diets to new and largely unfamiliar perennial crops, they also offer huge potential that has been almost entirely ignored by climate crusaders. Many of these carbon farming practices are already implemented globally on a scale of millions of hectares. These are not minor or marginal efforts, but win-win solutions that provide food, fodder, and feedstocks while fostering community self-reliance, creating jobs, protecting biodiversity, and repairing degraded land—all while sequestering carbon, reducing emissions, and ultimately contributing to a climate that will remain amenable to human civilization. Just as importantly to a livable future, these crops and practices can contribute to broader social goals such as women’s empowerment, food sovereignty, and climate justice. The Carbon Farming Solution is—at its root—a toolkit and the most complete collection of climate-friendly crops and practices currently available. With this toolkit, farmers, communities, and governments large and small, can successfully launch carbon farming projects with the most appropriate crops and practices to their climate, locale, and socioeconomic needs. Toensmeier’s ultimate goal is to place carbon farming firmly in the center of the climate solutions platform, alongside clean solar and wind energy. With The Carbon Farming Solution, Toensmeier wants to change the discussion, impact policy decisions, and steer mitigation funds to the research, projects, and people around the world who envision a future where agriculture becomes the protagonist in this fraught, urgent, and unprecedented drama of our time. Citizens, farmers, and funders will be inspired to use the tools presented in this important book to transform degraded lands around the world into productive carbon-storing landscapes.