Download Free Agent Intelligence Through Data Mining Book in PDF and EPUB Free Download. You can read online Agent Intelligence Through Data Mining and write the review.

This book addresses the use of data mining for smarter, more efficient agents, as well as the challenge of generating intelligence from data while transferring it to a separate, possibly autonomous, software entity. Following a brief review of data mining and agent technology fields, the book presents a methodology for developing multi-agent systems, describes available open-source tools, and demonstrates the application of the methodology on three different cases.
There is a large increase in the amount of information available on World Wide Web and also in number of online databases. This information abundance increases the complexity of locating relevant information. Such a complexity drives the need for improved and intelligent systems for search and information retrieval. Intelligent agents are currently used to improve the search and retrieval information on World Wide Web. The use of existing search and retrieval engines with the addition of intelligent agents allows a more comprehensive search with a performance that can be measured. Intelligent Agents for Data Mining and Information Retrieval discusses the foundation as well as the practical side of intelligent agents and their theory and applications for web data mining and information retrieval. The book can used for researchers at the undergraduate and post-graduate levels as well as a reference of the state-of-art for cutting edge researchers.
Knowledge Mining Using Intelligent Agents explores the concept of knowledge discovery processes and enhances decision-making capability through the use of intelligent agents like ants, termites and honey bees. In order to provide readers with an integrated set of concepts and techniques for understanding knowledge discovery and its practical utility, this book blends two distinct disciplines data mining and knowledge discovery process, and intelligent agents-based computing (swarm intelligence and computational intelligence). For the more advanced reader, researchers, and decision/policy-makers are given an insight into emerging technologies and their possible hybridization, which can be used for activities like dredging, capturing, distributions and the utilization of knowledge in their domain of interest (i.e. business, policy-making, etc.). By studying the behavior of swarm intelligence, this book aims to integrate the computational intelligence paradigm and intelligent distributed agents architecture to optimize various engineering problems and efficiently represent knowledge from the large gamut of data.
Publisher Description
This book constitutes the refereed proceedings of the Second International Workshop on Autonomous Intelligent Systems: Agents and Data Mining, AIS-ADM 2007, held in St. Petersburg, Russia in June 2007. The 17 revised full papers and six revised short papers presented together with four invited lectures cover agent and data mining, agent competition and data mining, as well as text mining, semantic Web, and agents.
This book constitutes the refereed proceedings of the International Workshop on Autonomous Intelligent Systems: Agents and Data Mining, AIS-ADM 2005, held in St. Petersburg, Russia in June 2005. The 17 revised full papers presented together with 5 invited papers and the abstract of an invited talk were carefully reviewed and selected from 29 submissions. The papers are organized in topical sections on agent-based data mining issues, ontologies and Web mining, and applications and case studies.
Data Mining and Multi agent Integration aims to re?ect state of the art research and development of agent mining interaction and integration (for short, agent min ing). The book was motivated by increasing interest and work in the agents data min ing, and vice versa. The interaction and integration comes about from the intrinsic challenges faced by agent technology and data mining respectively; for instance, multi agent systems face the problem of enhancing agent learning capability, and avoiding the uncertainty of self organization and intelligence emergence. Data min ing, if integrated into agent systems, can greatly enhance the learning skills of agents, and assist agents with predication of future states, thus initiating follow up action or intervention. The data mining community is now struggling with mining distributed, interactive and heterogeneous data sources. Agents can be used to man age such data sources for data access, monitoring, integration, and pattern merging from the infrastructure, gateway, message passing and pattern delivery perspectives. These two examples illustrate the potential of agent mining in handling challenges in respective communities. There is an excellent opportunity to create innovative, dual agent mining interac tion and integration technology, tools and systems which will deliver results in one new technology.
This book presents 10 chapters on various aspects of intelligent information agents contributed by members of the respective AgentLink special interest group. The papers are organized in three parts on agent-based information systems, adaptive information agents, and coordination of information agents. Also included are a comprehensive introduction and surveys for each of the three parts.
Demonstrating how to enhance both new and existing .NET applications with powerful new artificial intelligence technologies, this text uses real-world examples which readers can use as the basis for their own applications.
The book aims to merge Computational Intelligence with Data Mining, which are both hot topics of current research and industrial development, Computational Intelligence, incorporates techniques like data fusion, uncertain reasoning, heuristic search, learning, and soft computing. Data Mining focuses on unscrambling unknown patterns or structures in very large data sets. Under the headline "Discovering Structures in Large Databases” the book starts with a unified view on ‘Data Mining and Statistics – A System Point of View’. Two special techniques follow: ‘Subgroup Mining’, and ‘Data Mining with Possibilistic Graphical Models’. "Data Fusion and Possibilistic or Fuzzy Data Analysis” is the next area of interest. An overview of possibilistic logic, nonmonotonic reasoning and data fusion is given, the coherence problem between data and non-linear fuzzy models is tackled, and outlier detection based on learning of fuzzy models is studied. In the domain of "Classification and Decomposition” adaptive clustering and visualisation of high dimensional data sets is introduced. Finally, in the section "Learning and Data Fusion” learning of special multi-agents of virtual soccer is considered. The last topic is on data fusion based on stochastic models.