Download Free Agent Based Optimization Book in PDF and EPUB Free Download. You can read online Agent Based Optimization and write the review.

This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems. This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.
Generate and Analyze Multi-Level Data Spatial microsimulation involves the generation, analysis, and modeling of individual-level data allocated to geographical zones. Spatial Microsimulation with R is the first practical book to illustrate this approach in a modern statistical programming language. Get Insight into Complex Behaviors The book progresses from the principles underlying population synthesis toward more complex issues such as household allocation and using the results of spatial microsimulation for agent-based modeling. This equips you with the skills needed to apply the techniques to real-world situations. The book demonstrates methods for population synthesis by combining individual and geographically aggregated datasets using the recent R packages ipfp and mipfp. This approach represents the "best of both worlds" in terms of spatial resolution and person-level detail, overcoming issues of data confidentiality and reproducibility. Implement the Methods on Your Own Data Full of reproducible examples using code and data, the book is suitable for students and applied researchers in health, economics, transport, geography, and other fields that require individual-level data allocated to small geographic zones. By explaining how to use tools for modeling phenomena that vary over space, the book enhances your knowledge of complex systems and empowers you to provide evidence-based policy guidance.
Swarm-based multi-agent simulation leads to better modeling of tasks in biology, engineering, economics, art, and many other areas. It also facilitates an understanding of complicated phenomena that cannot be solved analytically. Agent-Based Modeling and Simulation with Swarm provides the methodology for a multi-agent-based modeling approach that integrates computational techniques such as artificial life, cellular automata, and bio-inspired optimization. Each chapter gives an overview of the problem, explores state-of-the-art technology in the field, and discusses multi-agent frameworks. The author describes step by step how to assemble algorithms for generating a simulation model, program, method for visualization, and further research tasks. While the book employs the commonly used Swarm system, readers can model and develop the simulations with their own simulator. To encourage hands-on exploration of emergent systems, Swarm-based software and source codes are available for download from the author’s website. A thorough overview of multi-agent simulation and supporting tools, this book shows how this type of simulation is used to acquire an understanding of complex systems and artificial life. It carefully explains how to construct a simulation program for various applications.
This book provides an emerging computational intelligence tool in the framework of collective intelligence for modeling and controlling distributed multi-agent systems referred to as Probability Collectives. In the modified Probability Collectives methodology a number of constraint handling techniques are incorporated, which also reduces the computational complexity and improved the convergence and efficiency. Numerous examples and real world problems are used for illustration, which may also allow the reader to gain further insight into the associated concepts.
To fully understand not only the past, but also the trajectories, of human societies, we need a more dynamic view of human social systems. Agent-based modeling (ABM), which can create fine-scale models of behavior over time and space, may reveal important, general patterns of human activity. Agent-Based Modeling for Archaeology is the first ABM textbook designed for researchers studying the human past. Appropriate for scholars from archaeology, the digital humanities, and other social sciences, this book offers novices and more experienced ABM researchers a modular approach to learning ABM and using it effectively. Readers will find the necessary background, discussion of modeling techniques and traps, references, and algorithms to use ABM in their own work. They will also find engaging examples of how other scholars have applied ABM, ranging from the study of the intercontinental migration pathways of early hominins, to the weather–crop–population cycles of the American Southwest, to the trade networks of Ancient Rome. This textbook provides the foundations needed to simulate the complexity of past human societies, offering researchers a richer understanding of the past—and likely future—of our species.
This book constitutes the proceedings of the 13th International Conference on Social, Cultural, and Behavioral Modeling, SBP-BRiMS 2020, which was planned to take place in Washington, DC, USA. Due to the COVID-19 pandemic the conference was held online during October 18–21, 2020. The 33 full papers presented in this volume were carefully reviewed and selected from 66 submissions. A wide number of disciplines are represented including computer science, psychology, sociology, communication science, public health, bioinformatics, political science, and organizational science. Numerous types of computational methods are used, such as machine learning, language technology, social network analysis and visualization, agent-based simulation, and statistics.
At the crossroads of artificial intelligence, manufacturing engineering, operational research and industrial engineering and management, multi-agent based production planning and control is an intelligent and industrially crucial technology with increasing importance. This book provides a complete overview of multi-agent based methods for today’s competitive manufacturing environment, including the Job Shop Manufacturing and Re-entrant Manufacturing processes. In addition to the basic control and scheduling systems, the author also highlights advance research in numerical optimization methods and wireless sensor networks and their impact on intelligent production planning and control system operation. Enables students, researchers and engineers to understand the fundamentals and theories of multi-agent based production planning and control Written by an author with more than 20 years’ experience in studying and formulating a complete theoretical system in production planning technologies Fully illustrated throughout, the methods for production planning, scheduling and controlling are presented using experiments, numerical simulations and theoretical analysis Comprehensive and concise, Multi-Agent Based Production Planning and Control is aimed at the practicing engineer and graduate student in industrial engineering, operational research, and mechanical engineering. It is also a handy guide for advanced students in artificial intelligence and computer engineering.
The Oxford Handbook of Computational Economics and Finance provides a survey of both the foundations of and recent advances in the frontiers of analysis and action. It is both historically and interdisciplinarily rich and also tightly connected to the rise of digital society. It begins with the conventional view of computational economics, including recent algorithmic development in computing rational expectations, volatility, and general equilibrium. It then moves from traditional computing in economics and finance to recent developments in natural computing, including applications of nature-inspired intelligence, genetic programming, swarm intelligence, and fuzzy logic. Also examined are recent developments of network and agent-based computing in economics. How these approaches are applied is examined in chapters on such subjects as trading robots and automated markets. The last part deals with the epistemology of simulation in its trinity form with the integration of simulation, computation, and dynamics. Distinctive is the focus on natural computationalism and the examination of the implications of intelligent machines for the future of computational economics and finance. Not merely individual robots, but whole integrated systems are extending their "immigration" to the world of Homo sapiens, or symbiogenesis.