Download Free Affine Arithmetic Based Methods For Uncertain Power System Analysis Book in PDF and EPUB Free Download. You can read online Affine Arithmetic Based Methods For Uncertain Power System Analysis and write the review.

Affine Arithmetic-Based Methods for Uncertain Power System Analysis presents the unique properties and representative applications of Affine Arithmetic in power systems analysis, particularly as they are deployed for reliability optimization. The work provides a comprehensive foundation in Affine Arithmetic necessary to understand the central computing paradigms that can be adopted for uncertain power flow and optimal power flow analyses. These paradigms are adapted and applied to case studies, which integrate benchmark test systems and full step-by-step procedure for implementation so that readers are able to replicate and modify. The work is presented with illustrative numerical examples and MATLAB computations. - Provides a uniquely comprehensive review of affine arithmetic in both its core theoretical underpinnings and their developed applications to power system analysis - Details the exemplary benefits derived by the deployment of affine arithmetic methods for uncertainty handling in decision-making processes - Clarifies arithmetical complexity and eases the understanding of illustrative methodologies for researchers in both power system and decision-making fields
Explore the applications of range analysis to power systems under conditions of uncertainty In Interval Methods for Uncertain Power System Analysis, accomplished engineer Dr. Alfredo Vaccaro delivers a comprehensive discussion of the mathematical foundations of range analysis and its application to solving traditional power system operation problems in the presence of strong and correlated uncertainties. The book explores highly relevant topics in the area, from interval methods for uncertainty representation and management to a variety of application examples. The author offers readers the latest methodological breakthroughs and roadmaps to implementing the mathematics discussed within, as well as best practices commonly employed across the industry. Interval Methods for Uncertain Power System Analysis includes examinations of linear and non-linear equations, as well as: A thorough introduction to reliable computing, including discussions of interval arithmetic and interval-based operators Comprehensive explorations of uncertain power flow analysis, including discussions of problem formulation and sources of uncertainty in power flow analysis In-depth examinations of uncertain optimal power flow analysis Fulsome discussions of uncertain small signal stability analysis, including treatments of how to compute eigenvalues of uncertain matrices Perfect for engineers working in power flow and optimal power flow analyses, optimization theory, and computer aided simulation, Interval Methods for Uncertain Power System Analysis will also earn a place in the libraries of researchers and graduate students studying decision making under uncertainty in power systems operation.
This book addresses the uncertainties of wind power modeled as interval numbers and assesses the physical modeling and methods for interval power flow, interval economic dispatch and interval robust economic dispatch. In particular, the optimization models are set up to address these topics and the state-of-the-art methods are employed to efficiently solve the proposed models. Several standard IEEE test systems as well as real-world large-scale Polish power systems have been tested to verify the effectiveness of the proposed models and methods. These methods can be further applied to other research fields that are involved with uncertainty.
This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.
This book presents extended versions of selected papers from the annual International Workshops on Constraint Programming and Decision Making from 2016 to 2018. The papers address all stages of decision-making under constraints: (1) precisely formulating the problem of multi-criteria decision-making; (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms and making these algorithms as efficient as possible; and (4) taking into account interval, probabilistic, and fuzzy uncertainty inherent in the corresponding decision-making problems. In many application areas, it is necessary to make effective decisions under constraints, and there are several area-specific techniques for such decision problems. However, because they are area-specific, it is not easy to apply these techniques in other application areas. As such, the annual International Workshops on Constraint Programming and Decision Making focus on cross-fertilization between different areas, attracting researchers and practitioners from around the globe. The book includes numerous papers describing applications, in particular, applications to engineering, such as control of unmanned aerial vehicles, and vehicle protection against improvised explosion devices.
Uncertainty is an inseparable component of almost every measurement and occurrence when dealing with real-world problems. Finding solutions to real-life problems in an uncertain environment is a difficult and challenging task. As such, this book addresses the solution of uncertain static and dynamic problems based on affine arithmetic approaches. Affine arithmetic is one of the recent developments designed to handle such uncertainties in a different manner which may be useful for overcoming the dependency problem and may compute better enclosures of the solutions. Further, uncertain static and dynamic problems turn into interval and/or fuzzy linear/nonlinear systems of equations and eigenvalue problems, respectively. Accordingly, this book includes newly developed efficient methods to handle the said problems based on the affine and interval/fuzzy approach. Various illustrative examples concerning static and dynamic problems of structures have been investigated in order to show the reliability and efficacy of the developed approaches.
This volume contains 73 papers presented at ICMEET 2015: International Conference on Microelectronics, Electromagnetics and Telecommunications. The conference was held during 18 – 19 December, 2015 at Department of Electronics and Communication Engineering, GITAM Institute of Technology, GITAM University, Visakhapatnam, INDIA. This volume contains papers mainly focused on Antennas, Electromagnetics, Telecommunication Engineering and Low Power VLSI Design.
This book is a collection of research articles and critical review articles, describing the overall approach to energy management. The book emphasizes the technical issues that drive energy efficiency in context of power systems. This book contains case studies with and without solutions on modelling, simulation and optimization techniques. It covers some innovative topics such as medium voltage (MV) back-to-back (BTB) system, cost optimization of a ring frame unit in textile industry, rectenna for radio frequency (RF) energy harvesting, ecology and energy dimension in infrastructural designs, 2.4 kW three-phase inverter for aircraft application, study of automatic generation control (AGC) in a two area hydrothermal power system, energy-efficient and reliable depth-based routing protocol for underwater wireless sensor network, and power line communication using LabVIEW. This book is primarily targeted at researchers and senior graduate students, but is also highly useful for the industry professional and scientists.
Electrical grids are, in general, among the most reliable systems in the world. These large interconnected systems, however, are subject to a host of challenges - aging infrastructure, transmission expansion to meet growing demand, distributed resources, and congestion management, among others. Innovations in Power Systems Reliability aims to provide a vision for a comprehensive and systematic approach to meet the challenges of modern power systems. Innovations in Power Systems Reliability is focused on the emerging technologies and methodologies for the enhancement of electrical power systems reliability. It addresses many relevant topics in this area, ranging from methods for balancing resources to various reliability and security aspects. Innovations in Power Systems Reliability not only discusses technological breakthroughs and sets out roadmaps in implementing the technology, but it also informs the reader about current best practice. It is a valuable source of information for academic researchers, as well as those working in industrial research and development.
Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author's clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems Heat conduction and diffusion problems Fluid dynamics problems The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.