Download Free Aerosol Processing Of Materials Book in PDF and EPUB Free Download. You can read online Aerosol Processing Of Materials and write the review.

Aerosol Processing of Materials offers a comprehensive look at advanced materials processing by aerosol methods. This self-contained volume examines in-depth what it takes to generate powders and films with specialized characteristics using gas-phase processes. In three main parts, it addresses particle formation by intraparticle reaction, particle formation by gas-to-particle conversion, and film formation. All aspects of these subjects are considered, from the basic principles and chemistry of aerosols to processing methods and the characterization of materials. The text incorporates an impressive array of examples involving materials such as metals, metal oxides, and metal sulfides for application in pigments, ceramics superconductors, electronics, sensors, glass coatings, semiconductors, optical materials, and thick films.
A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.
Nanophase Materials is the first and, as yet, the only comprehensive book published in this new and exciting area of materials science. It gives a broad overview of the revolutionary new field of nanophase materials; a view which spans the materials, physics, and chemistry research communities at a tutorial level that is suitable for advanced undergraduates, graduate students, postdoctoral researchers, and experts or would-be experts in the science of nanostructured materials. The articles are authored by many of the world's most prominent scientists in this field. The book covers the diverse methods for synthesizing nanophase materials, a variety of subsequent processing methodologies, what is known about the structures of these materials on various length scales from atomic to macroscopic, and the properties of these unique and novel materials. The materials properties covered are mechanical, electronic, optical, and magnetic and hence span a wide range of important new opportunities for technological applications.
Aerosol science and engineering is a vibrant field of particle technology and chemical reaction engineering. The book presents a timely account of this interdisciplinary topic and its various application areas. It will be of interest to scientists or engineers active in aerosol physics, aerosol or colloid chemistry, atmospheric processes, and chemical, mechanical, environmental and/or materials engineering.
Advances and applications of nanosized catalysts Over the last five years, tremendous advances have been made in heterogeneous catalysis. In particular, catalysts' design from the bulk to nano-scale (1-100 nm), with desirable active sites, has received great attention in current catalysis research with the aim to fill the gap between homogeneous and heterogeneous catalysis. This volume focuses on applications of nanosized catalysts. Articles describe characterization, synthesis, and applications in biomass conversion, auto-exhaust purification, selective oxidation/hydrogenation, syngas conversion, and other important reactions. Readers will find examples of catalysts designed to be tunable for specific outcomes, inspiring their research. Scientists and engineers in chemistry, materials science, nanotechnology, and chemical engineering will find this volume useful.
AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.