Download Free Aerodynamic Drag Reduction Devices In The Trucking Industry Book in PDF and EPUB Free Download. You can read online Aerodynamic Drag Reduction Devices In The Trucking Industry and write the review.

This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.
Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.
It is our pleasure to present these proceedings for “The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains” International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world’s leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
Aerodynamics of Road Vehicles details the aerodynamics of passenger cars, commercial vehicles, sports cars, and race cars; their external flow field; as well as their internal flow field. The book, after giving an introduction to automobile aerodynamics and some fundamentals of fluid mechanics, covers topics such as the performance and aerodynamics of different kinds of vehicles, as well as test techniques for their aerodynamics. The book also covers other concepts related to automobiles such as cooling systems and ventilations for vehicles. The text is recommended for mechanical engineers and phycisists in the automobile industry who would like to understand more about aerodynamics of motor vehicles and its importance on the field of road safety and automobile production.
It is our pleasure to present these proceedings from the United Engineering Foundation Conference on The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held December 2-6, 2002, in Monterey, California. This Department of Energy, United Engineering Foundation, and industry sponsored conference brought together 90 leading engineering researchers from around the world to discuss the aerodynamic drag of heavy vehicles. Participants from national labs, academia, and industry, including truck manufacturers, discussed how computer simulation and experimental techniques could be used to design more fuel efficient trucks, buses, and trains. Conference topics included comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from the Department of Energy sponsored and other wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry were presented, along with their use in evaluating drag reduction devices. We would like to thank the UEF conference organizers for their dedication and quick response to sudden deadlines. In addition, we would like to thank all session chairs, the scientific advisory committee, authors, and reviewers for their many hours of dedicated effort that contributed to a successful conference and resulted in this document of the conference proceedings. We also gratefully acknowledge the support received from the United Engineering Foundation, the US Department of Energy, Lawrence Livermore National Laboratory, Volvo Trucks America, International Truck and Engine Corporation, and Freightliner LLC.
These Proceedings contain the papers and oral discussions presented at the Symposium on AERODYNAMIC DRAG MECHANISMS of Bluff Bodies and Road Vehides held at the General Motors Research Laboratories in Warren, Michigan, on September 27 and 28, 1976. This international, invitational Symposium was the twentieth in an annual series, each one having been in a different technical discipline. The Symposia provide a forum for areas of science and technology that are of timely interest to the Research Laboratories as weIl as the technical community at large, and in which personnel of the Laboratories are actively involved. The Symposia furnish an opportunity for the exchange of ideas and current knowledge between participating research specialists from educational, industrial arid governmental institutions and serve to stimulate future research activity. The present world-wide energy situation makes it highly desirable to reduce the force required to move road vehicles through the atmosphere. A significant amount of the total energy consumed for transportation is expended in overcoming the aerodynamic resistance to motion of these vehicles. Reductions in this aerodynamic drag can therefore have a large impact on ground transportation energy requirements. Although aerodynamic development work on road vehides has been performed for many years, it has not been widely reported or accompanied by much basic research.
This book provides an introduction to ground vehicle aerodynamics and methodically guides the reader through the various aspects of the subject. Those needing specific information or a refresher can easily jump to the material of interest. There is a particular emphasis on various vehicle types (passenger cars, trucks, trains, motorcycles, race cars, etc.). However, the book is focused on cars and trucks, which are the most common vehicles in the speed range in which the study of ground vehicle aerodynamics is beneficial. Readers will gain a fundamental understanding of the topic, which will help them design vehicles that have improved aerodynamics; this will lead to better fuel efficiency, improved performance, and increased passenger comfort. The author’s basic approach to the presentation of the material is complemented with review questions, application questions, exercises, and suggested projects at the end of most of the chapters, which helps the reader apply the information presented, either in the classroom or for self-study. Aside from offering a solid understanding of ground vehicle aerodynamics, the book also offers more thorough study of several key topics. One such topic is car-truck interaction, when one vehicle (usually the smaller one) is overtaking the other. There is a direct and instant benefit in terms of safety on the highway from understanding the forces at play when one vehicle passes the other in the same direction and sense. Chapters examine: • Drag • Noise and vehicle soiling • Wind tunnels and road/track testing • Numerical methods • Vehicle stability and control • Vehicle sectional design • Large vehicles: trucks, trailers, buses, trains • Severe service and off-road vehicles • Race cars and convertibles • Motorcycles • Concept vehicles
This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.
The 21st Century Truck Partnership (21CTP), a cooperative research and development partnership formed by four federal agencies with 15 industrial partners, was launched in the year 2000 with high hopes that it would dramatically advance the technologies used in trucks and buses, yielding a cleaner, safer, more efficient generation of vehicles. Review of the 21st Century Truck Partnership critically examines and comments on the overall adequacy and balance of the 21CTP. The book reviews how well the program has accomplished its goals, evaluates progress in the program, and makes recommendations to improve the likelihood of the Partnership meeting its goals. Key recommendations of the book include that the 21CTP should be continued, but the future program should be revised and better balanced. A clearer goal setting strategy should be developed, and the goals should be clearly stated in measurable engineering terms and reviewed periodically so as to be based on the available funds.