Download Free Advice On The Department Of Energys Cleanup Technology Roadmap Book in PDF and EPUB Free Download. You can read online Advice On The Department Of Energys Cleanup Technology Roadmap and write the review.

Beginning with the Manhattan Project and continuing through the Cold War, the United States government constructed and operated a massive industrial complex to produce and test nuclear weapons and related technologies. When the Cold War ended, most of this complex was shut down permanently or placed on standby, and the United States government began a costly, long-term effort to clean up the materials, wastes, and environmental contamination resulting from its nuclear materials production. In 1989, Congress created the Office of Environmental Management (EM) within the Department of Energy (DOE) to manage this cleanup effort. Although EM has already made substantial progress, the scope of EM's future cleanup work is enormous. Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges provides advice to support the development of a cleanup technology roadmap for EM. The book identifies existing technology gaps and their priorities, strategic opportunities to leverage needed research and development programs with other organizations, needed core capabilities, and infrastructure at national laboratories and EM sites that should be maintained, all of which are necessary to accomplish EM's mission.
Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.
The National Defense Authorization Act for fiscal year 2017 contained a request for a National Academies of Sciences, Engineering, and Medicine review and assessment of science and technology development efforts within the Department of Energy's Office of Environmental Management (DOE-EM). This technical report is the result of the review and presents findings and recommendations.
The Department of Energy's Office of Environmental Management is developing a technology roadmap to guide planning and possible future congressional appropriations for its technology development programs. It asked the National Research Council of the National Academies to provide technical and strategic advice to support the development and implementation of this roadmap, specifically by undertaking a study that identifies principal science and technology gaps and their priorities for the cleanup program based on previous National Academies reports, updated and extended to reflect current site conditions and EM priorities and input form key external groups, such as the Nuclear Regulatory Commission, Defense Nuclear Facilities Safety Board, Environmental Protection Agency, and state regulatory agencies. In response, this book provides a high-level synthesis of principal science and technology gaps identified in previous NRC reports in part 1. Part 2 summarizes a workshop meant to bring together the key external groups to discuss current site conditions and science and technology needs.
The Department of Energy's Office of Environmental Management (DOE-EM) is responsible for cleaning up radioactive waste and environmental contamination resulting from five decades of nuclear weapons production and testing. A major focus of this program involves the retrieval, processing, and immobilization of waste into stable, solid waste forms for disposal. Waste Forms Technology and Performance, a report requested by DOE-EM, examines requirements for waste form technology and performance in the cleanup program. The report provides information to DOE-EM to support improvements in methods for processing waste and selecting and fabricating waste forms. Waste Forms Technology and Performance places particular emphasis on processing technologies for high-level radioactive waste, DOE's most expensive and arguably most difficult cleanup challenge. The report's key messages are presented in ten findings and one recommendation.
The Handbook of Environmental Degradation of Materials, Third Edition, explains how to measure, analyze and control environmental degradation for a wide range of industrial materials, including metals, polymers, ceramics, concrete, wood and textiles exposed to environmental factors, such as weather, seawater, and fire. This updated edition divides the material into four new sections, Analysis and Testing, Types of Degradation, Protective Measures and Surface Engineering, then concluding with Case Studies. New chapters include topics on Hydrogen Permeation and Hydrogen Induced Cracking, Weathering of Plastics, the Environmental Degradation of Ceramics and Advanced Materials, Antimicrobial Layers, Coatings, and the Corrosion of Pipes in Drinking Water Systems. Expert contributors to this book provide a wealth of insider knowledge and engineering expertise that complements their explanations and advice. Case Studies from areas such as pipelines, tankers, packaging and chemical processing equipment ensure that the reader understands the practical measures that can be put in place to save money, lives and the environment. - Introduces the reader to the effects of environmental degradation on a wide range of materials, including metals, plastics, concrete, wood and textiles - Describes the kind of degradation that effects each material and how best to protect it - Includes case studies that show how organizations, from small consulting firms, to corporate giants design and manufacture products that are more resistant to environmental effects