Download Free Advances In Visual Computing Book in PDF and EPUB Free Download. You can read online Advances In Visual Computing and write the review.

This volume LNCS 14361 and 14362 constitutes the refereed proceedings of the, 16th International Symposium, ISVC 2023, in October 2023, held at Lake Tahoe, NV, USA. The 42 full papers and 13 poster papers were carefully reviewed and selected from 120 submissions. A total of 25 papers were also accepted for oral presentation in special tracks from 34 submissions. The following topical sections followed as: Part 1: ST: Biomedical Image Analysis Techniques for Cancer Detection, Diagnosis and Management; Visualization; Video Analysis and Event Recognition; ST: Innovations in Computer Vision & Machine Learning for Critical & Civil Infrastructures; ST: Generalization in Visual Machine Learning; Computer Graphics; Medical Image Analysis; Biometrics; Autonomous Anomaly Detection in Images; ST: Artificial Intelligence in Aerial and Orbital Imagery; ST: Data Gathering, Curation, and Generation for Computer Vision and Robotics in Precision Agriculture. Part 2: Virtual Reality; Segmentation; Applications; Object Detection and Recognition; Deep Learning; Poster.
The two volume set LNCS 4291 and LNCS 4292 constitutes the refereed proceedings of the Second International Symposium on Visual Computing, ISVC 2006, held in Lake Tahoe, NV, USA in November 2006. The 65 revised full papers and 56 poster papers presented together with 57 papers of ten special tracks were carefully reviewed and selected from more than 280 submissions. The papers cover the four main areas of visual computing.
The two volume set LNCS 7431 and 7432 constitutes the refereed proceedings of the 8th International Symposium on Visual Computing, ISVC 2012, held in Rethymnon, Crete, Greece, in July 2012. The 68 revised full papers and 35 poster papers presented together with 45 special track papers were carefully reviewed and selected from more than 200 submissions. The papers are organized in topical sections: Part I (LNCS 7431) comprises computational bioimaging; computer graphics; calibration and 3D vision; object recognition; illumination, modeling, and segmentation; visualization; 3D mapping, modeling and surface reconstruction; motion and tracking; optimization for vision, graphics, and medical imaging, HCI and recognition. Part II (LNCS 7432) comprises topics such as unconstrained biometrics: advances and trends; intelligent environments: algorithms and applications; applications; virtual reality; face processing and recognition.
This book constitutes the refereed proceedings of the 14th International Symposium on Visual Computing, ISVC 2019, held in Lake Tahoe, NV, USA in October 2019. The 100 papers presented in this double volume were carefully reviewed and selected from 163 submissions. The papers are organized into the following topical sections: Deep Learning I; Computer Graphics I; Segmentation/Recognition; Video Analysis and Event Recognition; Visualization; ST: Computational Vision, AI and Mathematical methods for Biomedical and Biological Image Analysis; Biometrics; Virtual Reality I; Applications I; ST: Vision for Remote Sensing and Infrastructure Inspection; Computer Graphics II; Applications II; Deep Learning II; Virtual Reality II; Object Recognition/Detection/Categorization; and Poster.
Advances in computing and communications have brought about an increasing demand for visual information. Visual Computing addresses the principles behind "visual technology", and provides readers with a good understanding of how the integration of Computer Graphics, Visual Perception and Imaging is achieved. Included in the book is an overview of important research areas within this integration which will be useful for further work in the field. Foundations of visual perception and psychophysics are presented as well as basic methods of imaging and computer vision. This book serves as an excellent reference and textbook for those who wish to apply or study "visual computing technology."
This book constitutes the refereed proceedings of the 36th Computer Graphics International Conference, CGI 2019, held in Calgary, AB, Canada, in June 2019. The 30 revised full papers presented together with 28 short papers were carefully reviewed and selected from 231 submissions. The papers address topics such as: 3D reconstruction and rendering, virtual reality and augmented reality, computer animation, geometric modelling, geometric computing, shape and surface modelling, visual analytics, image processing, pattern recognition, motion planning, gait and activity biometric recognition, machine learning for graphics and applications in security, smart electronics, autonomous navigation systems, robotics, geographical information systems, and medicine and art.
This book constitutes the refereed proceedings of the 38th Computer Graphics International Conference, CGI 2021, held virtually in September 2021. The 44 full papers presented together with 9 short papers were carefully reviewed and selected from 131 submissions. The papers are organized in the following topics: computer animation; computer vision; geometric computing; human poses and gestures; image processing; medical imaging; physics-based simulation; rendering and textures; robotics and vision; visual analytics; VR/AR; and engage.
This timely and authoritative volume explores the bidirectional relationship between images and locations. The text presents a comprehensive review of the state of the art in large-scale visual geo-localization, and discusses the emerging trends in this area. Valuable insights are supplied by a pre-eminent selection of experts in the field, into a varied range of real-world applications of geo-localization. Topics and features: discusses the latest methods to exploit internet-scale image databases for devising geographically rich features and geo-localizing query images at different scales; investigates geo-localization techniques that are built upon high-level and semantic cues; describes methods that perform precise localization by geometrically aligning the query image against a 3D model; reviews techniques that accomplish image understanding assisted by the geo-location, as well as several approaches for geo-localization under practical, real-world settings.
Deep learning is an artificially intelligent entity that teaches itself and can be utilized to make predictions. Deep learning mimics the human brain and provides learned solutions addressing many challenging problems in the area of visual computing. From object recognition to image classification for diagnostics, deep learning has shown the power of artificial deep neural networks in solving real world visual computing problems with super-human accuracy. The introduction of deep learning into the field of visual computing has meant to be the death of most of the traditional image processing and computer vision techniques. Today, deep learning is considered to be the most powerful, accurate, efficient and effective method with the potential to solve many of the most challenging problems in visual computing. This book provides an insight into deep machine learning and the challenges in visual computing to tackle the novel method of machine learning. It introduces readers to the world of deep neural network architectures with easy-to-understand explanations. From face recognition to image classification for diagnosis of cancer, the book provides unique examples of solved problems in applied visual computing using deep learning. Interested and enthusiastic readers of modern machine learning methods will find this book easy to follow. They will find it a handy guide for designing and implementing their own projects in the field of visual computing.
Modern factories are experiencing rapid digital transformation supported by emerging technologies, such as the Industrial Internet of things (IIOT), industrial big data and cloud technologies, deep learning and deep analytics, AI, intelligent robotics, cyber-physical systems and digital twins, complemented by visual computing (including new forms of artificial vision with machine learning, novel HMI, simulation, and visualization). This is evident in the global trend of Industry 4.0. The impact of these technologies is clear in the context of high-performance manufacturing. Important improvements can be achieved in productivity, systems reliability, quality verification, etc. Manufacturing processes, based on advanced mechanical principles, are enhanced by big data analytics on industrial sensor data. In current machine tools and systems, complex sensors gather useful data, which is captured, stored, and processed with edge, fog, or cloud computing. These processes improve with digital monitoring, visual data analytics, AI, and computer vision to achieve a more productive and reliable smart factory. New value chains are also emerging from these technological changes. This book addresses these topics, including contributions deployed in production, as well as general aspects of Industry 4.0.