Download Free Advances In Thermodynamics And Circular Thermoeconomics Book in PDF and EPUB Free Download. You can read online Advances In Thermodynamics And Circular Thermoeconomics and write the review.

This book on energy physics and energy efficiency discusses two essential components of energy physics: the fundamentals and the criteria. It covers the historical basis of Carnot models, the thermostatic cycles of double-function heat pumps and the optimization of thermomechanical engines, and discusses the results of various investigations, bringing together a number of previous works. The latter half of this book introduces the concept of "Circular Thermoeconomics" and assesses the physical costs of recycling waste in increasingly complex industrial processes. It then goes on to present "Relative Free Energy", allowing us to create a new mathematical theory of thermodynamic costs in order to diagnose malfunctions in thermal systems. The book shows the progression of knowledge on the existence of successive energy, power and efficiency, and pairs this with the economic aspects, which are already becoming linked to growing environmental concerns.
This book stems from peer-reviewed work the author has published in energy and scientific journals, and follow-up working papers produced on the many links between economics, energy and thermodynamics. Topics covered in this third edition of the book include the gas laws, the distribution of income, the 1st and 2nd Laws of Thermodynamics applied to economics, economic processes and elasticity, entropy and utility, production processes, empirical monetary and employment analysis of the UK and USA economies up to 2011, interest rates, investment and discounted cash flow, bond yield and spread, unemployment, entropy maximization principles, business cycles and reaction kinetics. A chapter is devoted to in-depth analyses of world energy resources and climate change as factors that will impact on economic output. The book finishes with a discussion of the future sustainability of the economic system commensurate with prevailing constraints. The book is aimed at the professional/scholarly and further/higher education economics and science markets
Reference for engineers in a wide variety of industries (including power plants and chemical plants) on design of thermal systems.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
This thorough and highly relevant volume examines exergy, energy and the environment in the context of energy systems and applications and as a potential tool for design, analysis, optimization. It further considers their role in minimizing and/or eliminating environmental impacts and providing for sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered.
Quantifying exergy losses in the energy supply system of buildings reveals the potential for energy improvement, which cannot be discovered using conventional energy analysis. Thermoeconomics combines economic and thermodynamic analysis by applying the concept of cost (an economic concept) to exergy, as exergy is a thermodynamic property fit for this purpose, in that it combines the quantity of energy with its quality factor. Exergy Analysis and Thermoeconomics of Buildings applies exergy analysis methods and thermoeconomics to the built environment. The mechanisms of heat transfer throughout the envelope of buildings are analyzed from an exergy perspective and then to the building thermal installations, analyzing the different components, such as condensing boilers, absorption refrigerators, microcogeneration plants, etc., including solar installations and finally the thermal facilities as a whole. A detailed analysis of the cost formation process is presented, which has its physical roots firmly planted in the second law of thermodynamics. The basic principles and the rules of cost allocation, in energy units (exergy cost), in monetary units (exergoeconomic cost), and in CO2 emissions (exergoenvironmental cost), based on the so-called Exergy Cost Theory are presented and applied to thermal installations of buildings. Clear and rigorous in its exposition, Exergy Analysis and Thermoeconomics of Buildings discusses exergy analysis and thermoeconomics and the role they could play in the analysis and design of building components, either the envelope or the thermal facilities, as well as the diagnosis of thermal installations. This book moves progressively from introducing the basic concepts to applying them. Exergy Analysis and Thermoeconomics of Buildings provides examples of specific cases throughout this book. These cases include real data, so that the results obtained are useful to interpret the inefficiencies and losses that truly occur in actual installations; hence, the assessment of their effects encourages the manner to improve efficiency. - Applies exergy analysis methods for the installation of building thermal facilities equipment components, including pipes, valves, heat exchangers, boilers and heat pumps - Helps readers determine the operational costs of heating and cooling building systems - Includes exergy analysis methods that are devoted to absorption refrigerators, adsorption cooling systems, basic air conditioning processes, ventilation systems and solar systems, either thermal and PV - Discusses the direct application of exergy analysis concepts, including examples of buildings with typical heating, DHW and air conditioning installations
This book presents the diverse and rapidly expanding field of Entropy Generation Minimization (EGM), the method of thermodynamic optimization of real devices. The underlying principles of the EGM method - also referred to as "thermodynamic optimization," "thermodynamic design," and "finite time thermodynamics" - are thoroughly discussed, and the me
Is Gaia becoming Thanatia, a resource exhausted planet? For how long can our high-tech society be sustained in the light of declining mineral ore grades, heavy dependence on un-recycled critical metals and accelerated material dispersion? These are all root causes of future disruptions that need to be addressed today.This book presents a cradle-to-cradle view of the Earth's abiotic resources through a novel and rigorous approach based on the Second Law of Thermodynamics: heat dissipates and materials deteriorate and disperse. Quality is irreversibly lost. This allows for the assessment of such depletion and can be used to estimate the year where production of the main mineral commodities could reach its zenith. By postulating Thanatia, one acquires a sense of destiny and a concern for a unified global management of the planet's abiotic resource endowment.The book covers the core aspects of geology, geochemistry, mining, metallurgy, economics, the environment, thermodynamics and thermochemistry. It is supported by comprehensive databases related to mineral resources, including detailed compositions of the Earth's layers, thermochemical properties of over 300 substances, historical energy and mineral resource inventories, energy consumption and environmental impacts in the mining and metallurgical sector and world recycling rates of commodities.
A comprehensive and rigorous introduction to thermal system designfrom a contemporary perspective Thermal Design and Optimization offers readers a lucid introductionto the latest methodologies for the design of thermal systems andemphasizes engineering economics, system simulation, andoptimization methods. The methods of exergy analysis, entropygeneration minimization, and thermoeconomics are incorporated in anevolutionary manner. This book is one of the few sources available that addresses therecommendations of the Accreditation Board for Engineering andTechnology for new courses in design engineering. Intended forclassroom use as well as self-study, the text provides a review offundamental concepts, extensive reference lists, end-of-chapterproblem sets, helpful appendices, and a comprehensive case studythat is followed throughout the text. Contents include: * Introduction to Thermal System Design * Thermodynamics, Modeling, and Design Analysis * Exergy Analysis * Heat Transfer, Modeling, and Design Analysis * Applications with Heat and Fluid Flow * Applications with Thermodynamics and Heat and Fluid Flow * Economic Analysis * Thermoeconomic Analysis and Evaluation * Thermoeconomic Optimization Thermal Design and Optimization offers engineering students,practicing engineers, and technical managers a comprehensive andrigorous introduction to thermal system design and optimizationfrom a distinctly contemporary perspective. Unlike traditionalbooks that are largely oriented toward design analysis andcomponents, this forward-thinking book aligns itself with anincreasing number of active designers who believe that moreeffective, system-oriented design methods are needed. Thermal Design and Optimization offers a lucid presentation ofthermodynamics, heat transfer, and fluid mechanics as they areapplied to the design of thermal systems. This book broadens thescope of engineering design by placing a strong emphasis onengineering economics, system simulation, and optimizationtechniques. Opening with a concise review of fundamentals, itdevelops design methods within a framework of industrialapplications that gradually increase in complexity. Theseapplications include, among others, power generation by large andsmall systems, and cryogenic systems for the manufacturing,chemical, and food processing industries. This unique book draws on the best contemporary thinking aboutdesign and design methodology, including discussions of concurrentdesign and quality function deployment. Recent developments basedon the second law of thermodynamics are also included, especiallythe use of exergy analysis, entropy generation minimization, andthermoeconomics. To demonstrate the application of important designprinciples introduced, a single case study involving the design ofa cogeneration system is followed throughout the book. In addition, Thermal Design and Optimization is one of the best newsources available for meeting the recommendations of theAccreditation Board for Engineering and Technology for more designemphasis in engineering curricula. Supported by extensive reference lists, end-of-chapter problemsets, and helpful appendices, this is a superb text for both theclassroom and self-study, and for use in industrial design,development, and research. A detailed solutions manual is availablefrom the publisher.