Download Free Advances In The Control Of Markov Jump Linear Systems With No Mode Observation Book in PDF and EPUB Free Download. You can read online Advances In The Control Of Markov Jump Linear Systems With No Mode Observation and write the review.

This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.
This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
It has been widely recognized nowadays the importance of introducing mathematical models that take into account possible sudden changes in the dynamical behavior of a high-integrity systems or a safety-critical system. Such systems can be found in aircraft control, nuclear power stations, robotic manipulator systems, integrated communication networks and large-scale flexible structures for space stations, and are inherently vulnerable to abrupt changes in their structures caused by component or interconnection failures. In this regard, a particularly interesting class of models is the so-called Markov jump linear systems (MJLS), which have been used in numerous applications including robotics, economics and wireless communication. Combining probability and operator theory, the present volume provides a unified and rigorous treatment of recent results in control theory of continuous-time MJLS. This unique approach is of great interest to experts working in the field of linear systems with Markovian jump parameters or in stochastic control. The volume focuses on one of the few cases of stochastic control problems with an actual explicit solution and offers material well-suited to coursework, introducing students to an interesting and active research area. The book is addressed to researchers working in control and signal processing engineering. Prerequisites include a solid background in classical linear control theory, basic familiarity with continuous-time Markov chains and probability theory, and some elementary knowledge of operator theory. ​
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of σ-mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book proposes analysis and design techniques for Markov jump systems (MJSs) using Lyapunov function and sliding mode control techniques. It covers a range of topics including stochastic stability, finite-time boundedness, actuator-fault problem, bumpless transfer scheme, and adaptive sliding mode fault-tolerant control for uncertain MJSs. Notably, the book presents a new model for deception attacks (DAs), establishing the correlation between attacks and time delays, which should be of particular interest due to the recent increase in such attacks. The book's content is presented in a comprehensive, progressive manner, with fundamental principles introduced first before addressing more advanced techniques. The book features illustrations and tables, providing readers with a practical and intuitive approach to applying these methods in their own research. This book will prove invaluable to researchers and graduate students in control engineering and applied mathematics with an interest in the latest developments in MJSs.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
The book consists of recent works on several axes either with a more theoretical nature or with a focus on applications, which will span a variety of up-to-date topics in the field of systems and control. The main market area of the contributions include: Advanced fault-tolerant control, control reconfiguration, health monitoring techniques for industrial systems, data-driven diagnosis methods, process supervision, diagnosis and control of discrete-event systems, maintenance and repair strategies, statistical methods for fault diagnosis, reliability and safety of industrial systems artificial intelligence methods for control and diagnosis, health-aware control design strategies, advanced control approaches, deep learning-based methods for control and diagnosis, reinforcement learning-based approaches for advanced control, diagnosis and prognosis techniques applied to industrial problems, Industry 4.0 as well as instrumentation and sensors. These works constitute advances in the aforementioned scientific fields and will be used by graduate as well as doctoral students along with established researchers to update themselves with the state of the art and recent advances in their respective fields. As the book includes several applicative studies with several multi-disciplinary contributions (deep learning, reinforcement learning, model-based/data-based control etc.), the book proves to be equally useful for the practitioners as well industrial professionals.
Positive Markov Jump Linear Systems are piecewise positive linear systems affected by a stochastic signal generated by a Markov chain. Positive systems naturally arise in the description of biological systems, compartmental models, population dynamics, traffic modeling, chemical reactions, queue processes, and so on. A rich literature on positive linear systems is now available. Positive Markov Jump Linear Systems is the first work to provide an overview of these developments. It outlines the typical applications of such systems, giving a detailed description of the mathematical theory underpinning the subject. Positive Markov Jump Linear Systems provides a comprehensive and timely introduction to the study of such systems. Readers who are new to the topic will find everything required to understand such systems in a concise and accessible form.