Download Free Advances In The Continuing Education Of Engineers Book in PDF and EPUB Free Download. You can read online Advances In The Continuing Education Of Engineers and write the review.

Today in the United States, the professional health workforce is not consistently prepared to provide high quality health care and assure patient safety, even as the nation spends more per capita on health care than any other country. The absence of a comprehensive and well-integrated system of continuing education (CE) in the health professions is an important contributing factor to knowledge and performance deficiencies at the individual and system levels. To be most effective, health professionals at every stage of their careers must continue learning about advances in research and treatment in their fields (and related fields) in order to obtain and maintain up-to-date knowledge and skills in caring for their patients. Many health professionals regularly undertake a variety of efforts to stay up to date, but on a larger scale, the nation's approach to CE for health professionals fails to support the professions in their efforts to achieve and maintain proficiency. Redesigning Continuing Education in the Health Professions illustrates a vision for a better system through a comprehensive approach of continuing professional development, and posits a framework upon which to develop a new, more effective system. The book also offers principles to guide the creation of a national continuing education institute.
Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.
UNESCO pub. Monograph on comparison of continuing education for engineers in several developed countries and developing countries - surveys curriculum development, legal aspects, teaching methods, credit ststems, etc., And includes recommendations of the UNESCO international working group. Bibliography pp. 192 to 196, graphs and questionnaires.
Educating the Engineer of 2020 is grounded by the observations, questions, and conclusions presented in the best-selling book The Engineer of 2020: Visions of Engineering in the New Century. This new book offers recommendations on how to enrich and broaden engineering education so graduates are better prepared to work in a constantly changing global economy. It notes the importance of improving recruitment and retention of students and making the learning experience more meaningful to them. It also discusses the value of considering changes in engineering education in the broader context of enhancing the status of the engineering profession and improving the public understanding of engineering. Although certain basics of engineering will not change in the future, the explosion of knowledge, the global economy, and the way engineers work will reflect an ongoing evolution. If the United States is to maintain its economic leadership and be able to sustain its share of high-technology jobs, it must prepare for this wave of change.
The book presents research papers presented by academicians, researchers, and practicing structural engineers from India and abroad in the recently held Structural Engineering Convention (SEC) 2014 at Indian Institute of Technology Delhi during 22 – 24 December 2014. The book is divided into three volumes and encompasses multidisciplinary areas within structural engineering, such as earthquake engineering and structural dynamics, structural mechanics, finite element methods, structural vibration control, advanced cementitious and composite materials, bridge engineering, and soil-structure interaction. Advances in Structural Engineering is a useful reference material for structural engineering fraternity including undergraduate and postgraduate students, academicians, researchers and practicing engineers.
The book features selected high-quality papers presented at the International Conference on Computing, Power and Communication Technologies 2019 (GUCON 2019), organized by Galgotias University, India, in September 2019. Divided into three sections, the book discusses various topics in the fields of power electronics and control engineering, power and energy systems, and machines and renewable energy. This interesting compilation is a valuable resource for researchers, engineers and students.
This volume is the published proceedings of selected papers from the IFAC Symposium, Boston, Massachusetts, 24-25 June 1991, where a forum was provided for the discussion of the latest advances and techniques in the education of control and systems engineers. Emerging technologies in this field, neural networks, fuzzy logic and symbolic computation are incorporated in the papers. Containing 35 papers, these proceedings provide a valuable reference source for anyone lecturing in this area, with many practical applications included.
Engineering education in K-12 classrooms is a small but growing phenomenon that may have implications for engineering and also for the other STEM subjects-science, technology, and mathematics. Specifically, engineering education may improve student learning and achievement in science and mathematics, increase awareness of engineering and the work of engineers, boost youth interest in pursuing engineering as a career, and increase the technological literacy of all students. The teaching of STEM subjects in U.S. schools must be improved in order to retain U.S. competitiveness in the global economy and to develop a workforce with the knowledge and skills to address technical and technological issues. Engineering in K-12 Education reviews the scope and impact of engineering education today and makes several recommendations to address curriculum, policy, and funding issues. The book also analyzes a number of K-12 engineering curricula in depth and discusses what is known from the cognitive sciences about how children learn engineering-related concepts and skills. Engineering in K-12 Education will serve as a reference for science, technology, engineering, and math educators, policy makers, employers, and others concerned about the development of the country's technical workforce. The book will also prove useful to educational researchers, cognitive scientists, advocates for greater public understanding of engineering, and those working to boost technological and scientific literacy.