Download Free Advances In The Casimir Effect Book in PDF and EPUB Free Download. You can read online Advances In The Casimir Effect and write the review.

The subject of this book is the Casimir effect, a manifestation of zero-point oscillations of the quantum vacuum resulting in forces acting between closely spaced bodies. For the benefit of the reader, the book assembles field-theoretical foundations of this phenomenon, applications of the general theory to real materials, and a comprehensive description of all recently performed measurements of the Casimir force with a comparison between experiment and theory. There is an urgent need for a book of this type, given the increase of interest in forces originating from the quantum vacuum. Numerous new results have been obtained in the last few years which are not reflected in previous books on the subject, but which are very promising for fundamental science and nanotechnology. The book is a unique source of information presenting a critical assessment of all the main results and approaches from hundreds of journal papers. It also outlines new ideas which have not yet been universally accepted but which are finding increasing support from experiment.
This title is a comprehensive sourcebook, distilled from hundreds of recently published papers, about the Casimir effect: the small forces originating from the quantum vacuum and acting between closely spaced bodies. It brings together developments in experiment and theory, fundamental and applied aspects of the Casimir force.--Résumé de l'éditeur.
Of value to the general scientific public, this is the first book in the world scientific literature devoted to the Casimir effect. This topic has important applications in the fields of elementary particle physics, statistical physics, quantum field theory, gravitation and cosmology.
In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction OCo which may be either attractive or repulsive OCo between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically transparent Green''s function techniques, and makes applications from quarks to the cosmos, as well as observable consequences in condensed matter systems. It is aimed at graduate students and researchers in theoretical physics, quantum field theory, and applied mathematics. Contents: Introduction to the Casimir Effect; Casimir Force Between Parallel Plates; Casimir Force Between Parallel Dielectrics; Casimir Effect with Perfect Spherical; The Casimir Effect of a Dielectric Ball: The Equivalence of the Casimir Effect and van der Waals Forces; Application to Hadronic Physics: Zero-Point Energy in the Bag Model; Casimir Effect in Cylindrical Geometries; Casimir Effect in Two Dimensions: The Maxwell-Chern-Simons Casimir Effect; Casimir Effect on a D -dimensional Sphere; Cosmological Implications of the Casimir Effect; Local Effects; Sonoluminescene and the Dynamical Casimir Effect; Radiative Corrections to the Casimir Effect; Conclusions and Outlook; Appendices: Relation of Contour Integral Method to Green''s Function Approach; Casimir Effect for a Closed String. Readership: High-energy, condensed-matter and nuclear physicists."
Casimir effects serve as primary examples of directly observable manifestations of the nontrivial properties of quantum fields, and as such are attracting increasing interest from quantum field theorists, particle physicists, and cosmologists. Furthermore, though very weak except at short distances, Casimir forces are universal in the sense that all material objects are subject to them. They are thus also an increasingly important part of the physics of atom-surface interactions, while in nanotechnology they are being investigated not only as contributors to ‘stiction’ but also as potential mechanisms for actuating micro-electromechanical devices. While the field of Casimir physics is expanding rapidly, it has reached a level of maturity in some important respects: on the experimental side, where most sources of imprecision in force measurements have been identified as well as on the theoretical side, where, for example, semi-analytical and numerical methods for the computation of Casimir forces between bodies of arbitrary shape have been successfully developed. This book is, then, a timely and comprehensive guide to the essence of Casimir (and Casimir-Polder) physics that will have lasting value, serving the dual purpose of an introduction and reference to the field. While this volume is not intended to be a unified textbook, but rather a collection of largely independent chapters written by prominent experts in the field, the detailed and carefully written articles adopt a style that should appeal to non-specialist researchers in the field as well as to a broader audience of graduate students.
This book presents a selection of cutting-edge methods that allow readers to obtain novel models for nonlinear solid mechanics. Today, engineers need more accurate techniques for modeling solid body mechanics, chiefly due to innovative methods like additive manufacturing—for example, 3D printing—but also due to miniaturization. This book focuses on the formulation of continuum and discrete models for complex materials and systems, and especially the design of metamaterials. It gathers outstanding papers from the international conference IcONSOM 2019
The Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction between material bodies due to quantum fluctuations in whatever fields are relevant.
Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments