Download Free Advances In Synergetics Book in PDF and EPUB Free Download. You can read online Advances In Synergetics and write the review.

This text on the interdisciplinary field of synergetics will be of interest to students and scientists in physics, chemistry, mathematics, biology, electrical, civil and mechanical engineering, and other fields. It continues the outline of basic con cepts and methods presented in my book Synergetics. An Introduction, which has by now appeared in English, Russian, J apanese, Chinese, and German. I have written the present book in such a way that most of it can be read in dependently of my previous book, though occasionally some knowledge of that book might be useful. But why do these books address such a wide audience? Why are instabilities such a common feature, and what do devices and self-organizing systems have in common? Self-organizing systems acquire their structures or functions without specific interference from outside. The differentiation of cells in biology, and the process of evolution are both examples of self-organization. Devices such as the electronic oscillators used in radio transmitters, on the other hand, are man made. But we often forget that in many cases devices function by means of pro cesses which are also based on self-organization. In an electronic oscillator the motion of electrons becomes coherent without any coherent driving force from the outside; the device is constructed in such a way as to permit specific collective motions of the electrons. Quite evidently the dividing line between self-organiz ing systems and man-made devices is not at all rigid.
Over the past years the field of synergetics has been mushrooming. An ever increasing number of scientific papers are published on the subject, and numerous conferences all over the world are devoted to it. Depending on the particular aspects of synergetics being treated, these conferences can have such varied titles as "Nonequilibrium Nonlinear Statistical Physics," "Self-Organization," "Chaos and Order," and others. Many professors and students have expressed the view that the present book provides a good introduction to this new field. This is also reflected by the fact that it has been translated into Russian, Japanese, Chinese, German, and other languages, and that the second edition has also sold out. I am taking the third edition as an opportunity to cover some important recent developments and to make the book still more readable. First, I have largely revised the section on self-organization in continuously extended media and entirely rewritten the section on the Benard instability. Sec ond, because the methods of synergetics are penetrating such fields as eco nomics, I have included an economic model on the transition from full employ ment to underemployment in which I use the concept of nonequilibrium phase transitions developed elsewhere in the book. Third, because a great many papers are currently devoted to the fascinating problem of chaotic motion, I have added a section on discrete maps. These maps are widely used in such problems, and can reveal period-doubling bifurcations, intermittency, and chaos.
The spontaneous formation of well organized structures out of germs or even out of chaos is one of the most fascinating phenomena and most challenging problems scientists are confronted with. Such phenomena are an experience of our daily life when we observe the growth of plants and animals. Thinking of much larger time scales, scientists are led into the problems of evolution, and, ultimately, of the origin of living matter. When we try to explain or understand in some sense these extremely complex biological phenomena it is a natural question, whether pro cesses of self-organization may be found in much simpler systems of the un animated world. In recent years it has become more and more evident that there exist numerous examples in physical and chemical systems where well organized spatial, temporal, or spatio-temporal structures arise out of chaotic states. Furthermore, as in living of these systems can be maintained only by a flux of organisms, the functioning energy (and matter) through them. In contrast to man-made machines, which are to exhibit special structures and functionings, these structures develop spon devised It came as a surprise to many scientists that taneously-they are self-organizing. numerous such systems show striking similarities in their behavior when passing from the disordered to the ordered state. This strongly indicates that the function of such systems obeys the same basic principles. In our book we wish to explain ing such basic principles and underlying conceptions and to present the mathematical tools to cope with them.
Over the past years the field of synergetics has been mushrooming. An ever increasing number of scientific papers are published on the subject, and numerous conferences all over the world are devoted to it. Depending on the particular aspects of synergetics being treated, these conferences can have such varied titles as "Nonequilibrium Nonlinear Statistical Physics," "Self-Organization," "Chaos and Order," and others. Many professors and students have expressed the view that the present book provides a good introduction to this new field. This is also reflected by the fact that it has been translated into Russian, Japanese, Chinese, German, and other languages, and that the second edition has also sold out. I am taking the third edition as an opportunity to cover some important recent developments and to make the book still more readable. First, I have largely revised the section on self-organization in continuously extended media and entirely rewritten the section on the Benard instability. Sec ond, because the methods of synergetics are penetrating such fields as eco nomics, I have included an economic model on the transition from full employ ment to underemployment in which I use the concept of nonequilibrium phase transitions developed elsewhere in the book. Third, because a great many papers are currently devoted to the fascinating problem of chaotic motion, I have added a section on discrete maps. These maps are widely used in such problems, and can reveal period-doubling bifurcations, intermittency, and chaos.
The publication of this second edition was motivated by several facts. First of all, the first edition had been sold out in less than one year. It had found excellent critics and enthusiastic responses from professors and students welcoming this new interdisciplinary approach. This appreciation is reflected by the fact that the book is presently translated into Russian and Japanese also. I have used this opportunity to include some of the most interesting recent developments. Therefore I have added a whole new chapter on the fascinating and rapidly growing field of chaos dealing with irregular motion caused by deterministic forces. This kind of phenomenon is presently found in quite diverse fields ranging from physics to biology. Furthermore I have included a section on the analytical treatment of a morphogenetic model using the order parameter concept developed in this book. Among the further additions, there is now a complete description of the onset of ultrashort laser pulses. It goes without· saying that the few minor mis prints or errors of the first edition have been corrected. I wish to thank all who have helped me to incorporate these additions.
This book is an often-requested reprint of two classic texts by H. Haken: "Synergetics. An Introduction" and "Advanced Synergetics". Synergetics, an interdisciplinary research program initiated by H. Haken in 1969, deals with the systematic and methodological approach to the rapidly growing field of complexity. Going well beyond qualitative analogies between complex systems in fields as diverse as physics, chemistry, biology, sociology and economics, Synergetics uses tools from theoretical physics and mathematics to construct an unifying framework within which quantitative descriptions of complex, self-organizing systems can be made. This may well explain the timelessness of H. Haken's original texts on this topic, which are now recognized as landmarks in the field of complex systems. They provide both the beginning graduate student and the seasoned researcher with solid knowledge of the basic concepts and mathematical tools. Moreover, they admirably convey the spirit of the pioneering work by the founder of Synergetics through the essential applications contained herein that have lost nothing of their paradigmatic character since they were conceived.
In this book, the authors deal with basic concepts and models, with methodologies for studying the existence and stability of motions, understanding the mechanisms of formation of patterns and waves, their propagation and interactions in active lattice systems, and about how much cooperation or competition between order and chaos is crucial for synergetic behavior and evolution.
The book provides an introduction to some basic concepts of linguistic synergetics, viewed here as a new multidisciplinary research approach to language studies. It also advances diachronic linguosynergetics, focusing on principles and mechanisms of language change and development, and employing the methodological integrity of philosophy, linguistics and synergetics. Diachronic linguosynergetics endeavours to capture language in a state of change, when a language system follows a non-linear path, through numerous fluctuations and dissipation, leading out of chaos to order and stability. The book considers human language as an open, dynamic, non-linear, and self-organising system, with all its hierarchical subsystems and elements coherently interconnected and controlled by governing parameters. Special emphasis is laid on a variety of change rates on different language levels. As such, diachronic linguosynergetics is capable of addressing a broad range of issues concerning language change. It sheds new light on language development and permits better descriptions of phase transitions, or reconfigurations, of language as a synergetic megasystem.
Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.
Synergetics 2 contains a ninety-page index to both volumes. They comprise a single work with the sequence of paragraphs numbered to dovetail in a single integrated narrative. They should eventually be published as a single work eliminating the artificial division into two volumes resulting from the chronology of their composition. E. J. Applewhite, courtesy of the Estate of R. Buckminster Fuller