Download Free Advances In Surface Penetrating Technologies For Imaging Detection And Classification Book in PDF and EPUB Free Download. You can read online Advances In Surface Penetrating Technologies For Imaging Detection And Classification and write the review.

The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.
Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR-SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives.
The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.
This book consists of the proceedings of the International Conference on Detection and Classification of Underwater Targets which took place in Brest, France, in October 2012. This collection of academic papers represents the current state of the art of research and development in the areas of sensor technology, processing, modeling and automation for the purpose of detecting and classifying objects in the underwater environment, written by leading researchers in government, industry and academia. These articles should be of interest not only to those working on underwater target detection, but also to researchers in the related fields of remote sensing, robotic perception and medical imaging.
Discover the Applicability, Benefits, and Potential of New Technologies As advances in algorithms and computer technology have bolstered the digital signal processing capabilities of real-time sonar, radar, and non-invasive medical diagnostics systems, cutting-edge military and defense research has established conceptual similarities in these areas. Now civilian enterprises can use government innovations to facilitate optimal functionality of complex real-time systems. Advanced Signal Processing details a cost-efficient generic processing structure that exploits these commonalities to benefit commercial applications. Learn from a Renowned Defense Scientist, Researcher, and Innovator The author preserves the mathematical focus and key information from the first edition that provided invaluable coverage of topics including adaptive systems, advanced beamformers, and volume visualization methods in medicine. Integrating the best features of non-linear and conventional algorithms and explaining their application in PC-based architectures, this text contains new data on: Advances in biometrics, image segmentation, registration, and fusion techniques for 3D/4D ultrasound, CT, and MRI Fully digital 3D/ (4D: 3D+time) ultrasound system technology, computing architecture requirements, and relevant implementation issues State-of-the-art non-invasive medical procedures, non-destructive 3D tomography imaging and biometrics, and monitoring of vital signs Cardiac motion correction in multi-slice X-ray CT imaging Space-time adaptive processing and detection of targets interference-intense backgrounds comprised of clutter and jamming With its detailed explanation of adaptive, synthetic-aperture, and fusion-processing schemes with near-instantaneous convergence in 2-D and 3-D sensors (including planar, circular, cylindrical, and spherical arrays), the quality and illustration of this text’s concepts and techniques will make it a favored reference.
This book describes the key elements of the subject of surface penetrating radar, and in general terms the inter-relationship between those topics in electromagnetism, soil science, geophysics and signal processing which form part of its design.
This book constitutes the proceedings of the International Symposium on Neural N- works (ISNN 2004) held in Dalian, Liaoning, China during August 19–21, 2004. ISNN 2004 received over 800 submissions from authors in ?ve continents (Asia, Europe, North America, South America, and Oceania), and 23 countries and regions (mainland China, Hong Kong, Taiwan, South Korea, Japan, Singapore, India, Iran, Israel, Turkey, H- gary, Poland, Germany, France, Belgium, Spain, UK, USA, Canada, Mexico, Venezuela, Chile, and Australia). Based on reviews, the Program Committee selected 329 hi- quality papers for presentation at ISNN 2004 and publication in the proceedings. The papers are organized into many topical sections under 11 major categories (theore- cal analysis; learning and optimization; support vector machines; blind source sepa- tion, independent component analysis, and principal component analysis; clustering and classi?cation; robotics and control; telecommunications; signal, image and time series processing; detection, diagnostics, and computer security; biomedical applications; and other applications) covering the whole spectrum of the recent neural network research and development. In addition to the numerous contributed papers, ?ve distinguished scholars were invited to give plenary speeches at ISNN 2004. ISNN 2004 was an inaugural event. It brought together a few hundred researchers, educators, scientists, and practitioners to the beautiful coastal city Dalian in northeastern China.
Medical imaging has transformed the ways in which various conditions, injuries, and diseases are identified, monitored, and treated. As various types of digital visual representations continue to advance and improve, new opportunities for their use in medical practice will likewise evolve. Medical Imaging: Concepts, Methodologies, Tools, and Applications presents a compendium of research on digital imaging technologies in a variety of healthcare settings. This multi-volume work contains practical examples of implementation, emerging trends, case studies, and technological innovations essential for using imaging technologies for making medical decisions. This comprehensive publication is an essential resource for medical practitioners, digital imaging technologists, researchers, and medical students.