Download Free Advances In Shape Memory Materials Book in PDF and EPUB Free Download. You can read online Advances In Shape Memory Materials and write the review.

This book is devoted to the development of the shape memory materials and their applications. It covers many aspects of smart materials. It also describes the method on how we can obtain not only large recovery strains but also high recovery stress, energy storage and energy dissipation in applications. This volume treats the mechanical properties of shape memory alloys, shape memory polymers and the constitutive equations of the materials which are necessary to design the shape memory elements in applications. It also deals with the fatigue properties of materials, the method to design the shape memory elements, and the shape memory composites. The authors are international experts on shape memory alloys and shape memory polymers in the metallurgical, chemical, mechanical and engineering fields. The book will be of interest to graduate students, engineers, scientists and designers who are working in the field of electric and mechanical engineering, industries, medical engineering, aerospace engineering, robots, automatic machines, clothes and recycling for research, design and manufacturing.
Shape-memory polymers (SMP) are a unique branch of the smart materials family which are capable of changing shape on-demand upon exposure to external stimulus. The discovery of SMP made a significant breakthrough in the developments of novel smart materials for a variety of engineering applications, superseded the traditional materials, and also influenced the current methods of product designing. This book provides the latest advanced information of on-going research domains of SMP. This will certainly enlighten the reader to the achievements and tremendous potentials of SMP. The basic fundamentals of SMP, including shape-memory mechanisms and mechanics are described. This will aid reader to become more familiar with SMP and the basic concepts, thus guiding them in undergoing independent research in the SMP field. The book also provides the reader with associated challenges and existing application problems of SMP. This could assist the reader to focus more on these issues and further exploit their knowledge to look for innovative solutions. Future outlooks of SMP research are discussed as well. This book should prove to be extremely useful for academics, R&D managers, researcher scientists, engineers, and all others related to the SMP research.
Shape Memory Alloy Engineering introduces materials, mechanical, and aerospace engineers to shape memory alloys (SMAs), providing a unique perspective that combines fundamental theory with new approaches to design and modeling of actual SMAs as compact and inexpensive actuators for use in aerospace and other applications. With this book readers will gain an understanding of the intrinsic properties of SMAs and their characteristic state diagrams, allowing them to design innovative compact actuation systems for applications from aerospace and aeronautics to ships, cars, and trucks. The book realistically discusses both the potential of these fascinating materials as well as their limitations in everyday life, and how to overcome some of those limitations in order to achieve proper design of useful SMA mechanisms. Discusses material characterization processes and results for a number of newer SMAs Incorporates numerical (FE) simulation and integration procedures into commercial codes (Msc/Nastran, Abaqus, and others) Provides detailed examples on design procedures and optimization of SMA-based actuation systems for real cases, from specs to verification lab tests on physical demonstrators One of the few SMA books to include design and set-up of demonstrator characterization tests and correlation with numerical models
This work addresses the basic principles, synthesis / fabrication and applications of smart materials, specifically shape memory materials Based on origin, the mechanisms of transformations vary in different shape memory materials and are discussed in different chapters under titles of shape memory alloys, ceramics, gels and polymers Complete coverage of composite formation with polymer matrix and reinforcement filler conductive materials with examples
A comprehensive account of shape memory materials, now available in paperback.
This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.
Table of Contents -Shape-Memory Polymers and Shape-Changing Polymers By M. Behl, J. Zotzmann, and A. Lendlein -Shape-Memory Polymer Composites By Samy A. Madbouly and Andreas Lendlein -Characterization Methods for Shape-Memory Polymers By W. Wagermaier, K. Kratz, M. Heuchel, and A. Lendlein -Shape-Memory Polymers for Biomedical Applications By Christopher M. Yakacki and Ken Gall -Controlled Drug Release from Biodegradable Shape-Memory Polymers By ChristianWischke, Axel T. Neffe, and Andreas Lendlein
The first dedicated book describing the properties, preparation, characterization and device applications of TiNi-based shape memory alloys.
Shape memory polymers (SMPs) are an emerging class of smart polymers which give scientists the ability to process the material into a permanent state and predefine a second temporary state which can be triggered by different stimuli. The changing chemistries of SMPs allows scientists to tailor important properties such as strength, stiffness, elasticity and expansion rate. Consequently SMPs are being increasingly used and developed for minimally invasive applications where the material can expand and develop post insertion. This book will provide readers with a comprehensive review of shape memory polymer technologies. Part 1 will discuss the fundamentals and mechanical aspects of SMPs. Chapters in part 2 will look at the range of technologies and materials available for scientific manipulation whilst the final set of chapters will review applications. - Reviews the fundamentals of shape memory polymers with chapters focussing on the basic principles of the materials - Comprehensive coverage of design and mechanical aspects of SMPs - Expert analysis of the range of technologies and materials available for scientific manipulation
The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys – the simplified calculations for the bending of bars and their torsion. Other chapters are devoted to key topics such as the use of the “crystallographical theory of martensite” for SMA modeling, phenomenological and statistical investigations of SMAs, magneto-thermo-mechanical behavior of magnetic SMAs and the fracture mechanics of SMAs. Case studies are provided on the dimensioning of SMA elements offering the reader an additional useful framework on the subject. Contents 1. Some General Points about SMAs. 2. The World of Shape-memory Alloys. 3. Martensitic Transformation. 4. Thermodynamic Framework for the Modeling of Solid Materials. 5. Use of the “CTM” to Model SMAs. 6. Phenomenological and Statistical Approaches for SMAs. 7. Macroscopic Models with Internal Variables. 8. Design of SMA Elements: Case Studies. 9. Behavior of Magnetic SMAs. 10. Fracture Mechanics of SMAs. 11. General Conclusion. Appendix 1. Intrinsic Properties of Rotation Matrices. Appendix 2. “Twinning Equation” Demonstration. Appendix 3. Calculation of the Parameters a, n and Q from the “Twinning” Equation. Appendix 4. “Twinned” Austenite/Martensite Equation. About the Authors Christian Lexcellent is Emeritus Professor at the École National Supérieure de Mécanique et des Microtechniques de Besançon and a researcher in the Department of Applied Mechanics at FEMTO-ST in France. He is a specialist in the mechanics of materials and phase transition and has taught in the subjects of mechanics of continuum media and shape memory alloys. He is also a member of the International Committee of ESOMAT.