Download Free Advances In Quantum Field Theory Book in PDF and EPUB Free Download. You can read online Advances In Quantum Field Theory and write the review.

Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
This book comprises the second half of a quantum field theory (QFT) course for graduate students. It gives a concise introduction to advanced concepts that are important for research in elementary particle theory. Topics include the path integral, loop expansion, Feynman rules, various regularization methods, renormalization, running couplings and the renormalization group, fixed points and asymptotic freedom, effective action, Coleman-Weinberg effective potential, fermions, the axial anomaly, QED, gauge fixing, nonabelian gauge theories, unitarity, optical theorem, Slavnov-Taylor identities, beta function of Yang-Mills theory, a heuristic derivation of asymptotic freedom, instantons in SU(N) gauge theory, theta vacua and the strong CP problem. Exercises are included and are intended for advanced graduate students or postdocs seeking to deepen their understanding of QFT.
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.
Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it grew out of courses on field theory and particle physics taught at Columbia University and the City College of CUNY. The first few chapters, up to Chapter 12, contain material that generally goes into any course on quantum field theory, although there are a few nuances of presentation which readers may find to be different from other books. This first part of the book can be used for a general course on field theory, omitting, perhaps, the last three sections in Chapter 3, the last two in Chapter 8 and sections 6 and 7 in Chapter 10. The remaining chapters cover some of the more modern developments over the last three decades, involving topological and geometrical features. The introduction given to the mathematical basis of this part of the discussion is necessarily brief and should be accompanied by books on the relevant mathematical topics as indicated in the bibliography. Professor Nair also concentrates on developments pertinent to a better understanding of the standard model. There is no discussion of supersymmetry, supergravity, developments in field theory inspired by string theory, etc. There is also no detailed discussion of the renormalization group. Each of these topics would require a book in its own right to do justice to the topic. Quantum Field Theory: A Modern Perspective serves as a portal to so many more topics of detailed and ongoing research, referring readers to more detailed treatments for many specific topics. The book also contains extensive references, providing readers a more comprehensive perspective on the literature and the historical development of the subject. V. Parameswaran Nair is Professor of Physics at City College of The City University of New York (CUNY). Professor Nair has held Visiting Professorships at The Abdus Salam International Center for Theoretical Physics, Rockefeller University, Institute for Advanced Study at Princeton, and Massachusetts Institute of Technology.
Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.
Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory. The most physically relevant field theories OCo gauge theory on principal bundles, gravitation theory on natural bundles, theory of spinor fields and topological field theory OCo are presented in a complete way. This book is designed for theoreticians and mathematical physicists specializing in field theory. The authors have tried throughout to provide the necessary mathematical background, thus making the exposition self-contained.
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
A fully updated edition of the classic text by acclaimed physicist A. Zee Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University